【題目】已知函數(shù)f(x),g(x)滿足關系g(x)=f(x)f(x+α),其中α是常數(shù).
(1)設f(x)=cosx+sinx,,求g(x)的解析式;
(2)設計一個函數(shù)f(x)及一個α的值,使得;
(3)當f(x)=|sinx|+cosx,時,存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.
【答案】(1) (2)f(x)=2cosx,α=- (3)
【解析】
(1)求出f(x+α),代入g(x)=f(x)f(x+α)化簡得出.
(2)對g(x)化簡得=4cosxcos(x-),故f(x)=2cosx,α=-.
(3)求出g(x)的解析式,由題意得g(x1)為最小值,g(x2)為最大值,求出x1,x2,從而得到|x1-x2|的最小值.
(1)∵f(x)=cosx+sinx,∴f(x+α)=cos(x+)+sin(x+)=cosx-sinx;
∴g(x)=(cosx+sinx)(cosx-sinx)=cos2x-sin2x=cos2x.
(2)∵=4cosxcos(x-),
∴f(x)=2cosx,α=-.
(3)∵f(x)=|sinx|+cosx,∴g(x)=f(x)f(x+α)=(|sinx|+cosx)(|cosx|-sinx)
=,
因為存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,
所以當x1=2kπ+π或時,g(x)≥g(x1)=-1
當時,g(x)≤g(x2)=2
所以
或
所以|x1-x2|的最小值是.
科目:高中數(shù)學 來源: 題型:
【題目】兩地相距千米,汽車從地勻速行駛到地,速度不超過千米小時,已知汽車每小時的運輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,
(1)把全程運輸成本(元)表示為速度(千米小時)的函效:并求出當時,汽車應以多大速度行駛,才能使得全程運輸成本最;
(2)隨著汽車的折舊,運輸成本會發(fā)生一些變化,那么當,此時汽車的速度應調整為多大,才會使得運輸成本最小,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知△ABC的面積為 .(12分)
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是方程的兩根,數(shù)列是遞增的等差數(shù)列,數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)記,求數(shù)列的前和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lg(ax-bx),(a>1>b>0).
(1)求f(x)的定義域;
(2)若f(x)在(1,+∞)上遞增且恒取正值,求a,b滿足的關系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,函數(shù),是函數(shù)的導函數(shù), 是自然對數(shù)的底數(shù).
(1)當時,求導函數(shù)的最小值;
(2)若不等式對任意恒成立,求實數(shù)的最大值;
(3)若函數(shù)存在極大值與極小值,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com