(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分.)
A.(坐標系與參數(shù)方程選做題)在極坐標系中,兩點,間的距離是   
B.(不等式選講選做題)若不等式|x+1|+|x-2|>5的解集為   
C.(幾何證明選講選做題)如圖,點A,B,C是圓O上的點,且BC=6,∠BAC=120°,則圓O的面積等于   
【答案】分析:A,可設(shè)極點為O,則∠AOB=,而|OA|=3,|OB|=4,由余弦定理即可求得AB兩點間的距離;
B,可構(gòu)造函數(shù)f(x)=|x+1|+|x-2|=,由f(x)>5即可求得其解集;
C,由正弦定理=2R(R為圓O的半徑)即可求得R,從而可得圓O的面積.
解答:解:A:設(shè)極點為O,∵在極坐標系中,兩點為,
∴∠AOB=,又|OA|=3,|OB|=4,
∴|AB|2=|OA|2+|OB|2-2|OA|•|OB|cos∠AOB=9+16-2×3×4×=13,
∴|AB|=
B:令f(x)=|x+1|+|x-2|,則f(x)=
∵|x+1|+|x-2|>5,
∴當x≤-1,-2x+1>5,解得x<-2
當-1<x<2,有3>5(舍去)
當x≥2,2x-1>5解得x>3.
綜上所述,f(x)>5的解集為{x|x<-2或x>3};
C:在△ABC中,設(shè)△ABC中的外接圓的半徑為R,面積為S,
∵BC=6,∠BAC=120°,
∴由正弦定理得:=2R,即=4=2R,
∴R=2,
∴S=πR2=12π.
故A的答案為:;B的答案為:{x|x<-2或x>3};C的答案為:12π.
點評:本題A考查簡單曲線的極坐標方程,B考查絕對值不等式,C考查正弦定理,著重考查正弦定理與余弦定理的應(yīng)用及絕對值不等式的解法,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x+1|≥|x+2|的解集為
 

B.(幾何證明選做題)如圖所示,過⊙O外一點P作一條直線與⊙O交于A,B兩點,
已知PA=2,點P到⊙O的切線長PT=4,則弦AB的長為
 

C.(坐標系與參數(shù)方程選做題)若直線3x+4y+m=0與圓
x=1+cosθ
y=-2+sinθ
(θ為參數(shù))沒有公共點,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(三選一,考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
(1)(坐標系與參數(shù)方程選做題)在直角坐標系中圓C的參數(shù)方程為
x=1+2cosθ
y=
3
+2sinθ
(θ為參數(shù)),則圓C的普通方程為
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式選講選做題)設(shè)函數(shù)f(x)=|2x+1|-|x-4|,則不等式f(x)>2的解集為
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(幾何證明選講選做題) 如圖所示,等腰三角形ABC的底邊AC長為6,其外接圓的半徑長為5,則三角形ABC的面積是
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
(A)(幾何證明選做題)如圖,CD是圓O的切線,切點為C,點B在圓O上,BC=2,∠BCD=30°,則圓O的面積為
;
(B)(極坐標系與參數(shù)方程選做題)極坐標方程ρ=2sinθ+4cosθ表示的曲線截θ=
π
4
(ρ∈R)
所得的弦長為
3
2
3
2

(C)(不等式選做題)  不等式|2x-1|<|x|+1解集是
(0,2)
(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點E,交⊙O于點D.若PA=PE,∠ABC=60°,PD=1,PB=9,則EC=
4
4

B. P為曲線C1
x=1+cosθ
y=sinθ
,(θ為參數(shù))上一點,則它到直線C2
x=1+2t
y=2
(t為參數(shù))距離的最小值為
1
1

C.不等式|x2-3x-4|>x+1的解集為
{x|x>5或x<-1或-1<x<3}
{x|x>5或x<-1或-1<x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列二題中任選一題作答,如果多做,則按所做的第一題評閱記分.)
(A)(選修4-4坐標系與參數(shù)方程)曲線
x=cosα
y=a+sinα
(α為參數(shù))與曲線ρ2-2ρcosθ=0的交點個數(shù)為
 
個.
(B)(選修4-5不等式選講)若不等式|x+1|+|x-3| ≥a+
4
a
對任意的實數(shù)x恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案