設(shè)Tn為數(shù)列{an}的前n項乘積,滿足Tn=1-an(n∈N*)
(1)設(shè)bn=
1
Tn
,求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)cn=2n•bn,求證數(shù)列{cn}的前n項和Sn;
(3)設(shè)An=
Te1
+
Te2
+…
Ten
,求證:an+1-
1
2
An≤-
1
4
(1)∵Tn=1-an,an=
Tn
Tn-1
,n≥2,
Tn=1-
Tn
Tn-1
,從而
1
Tn
-
1
Tn-1
=1,(n≥2)
∴bn-bn-1=1,(n≥2)
∵T1=a1=1-a1,
a1=
1
2
,b1=
1
T1
=
1
a1
=2
,
∴{bn}是以2為首項,1為公差的等差數(shù)列.
(2)由(1)知bn=2+(n-1)=n+1,從而cn=(n+1)•2n
∴Sn=2•2+3•22+…+(n+1)•2n,
2Sn=2•22+3•23+…+n•2n+(n+1)•2n+1,
兩式相減,得-Sn=4+(22+23+…+2n)-(n+1)•2n+1
=4+
4(1-2n-1)
1-2
-(n+1)•2n+1
=-n•2n+1,
∴Sn=n•2n+1
(3)∵Tn=
1
bn
=
1
n+1

∴n≥2時,an=
Tn
Tn-1
=
n
n+1
,
a1=
1
2
,∴an=
n
n+1
,n∈N* 
,
An=T12+T22+…+Tn2
=
1
22
+
1
32
+…+
1
(n+1)2

1
2×3
+
1
3×4
+…+
1
(n+1)(n+2)

=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2

=
1
2
-
1
n+2

=an+1-
1
2
,
Anan+1-
1
2

又∵當(dāng)n≥2時,An=T12+T22+…+Tn2
=
1
22
+
1
32
+…+
1
(n+1)2

=
1
22
+
1
32
+…+
1
(n+1)2
1
22
+
1
2×3
+
1
3×4
+…+
1
n(n+1)

=
1
22
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=
1
4
+
1
2
-
1
n+1
=an-
1
4
,
an+1-
1
2
An≤-
1
4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Tn為數(shù)列{an}的前n項之積,滿足Tn=1-an(n∈N*).
(1)設(shè)bn=
1
Tn
,證明數(shù)列{bn}是等差數(shù)列,并求bn和an;
(2)設(shè)Sn=T12+T22+…+Tn2求證:an+1-
1
2
<Sn≤an-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Tn為數(shù)列{an}的前n項乘積,滿足Tn=1-an(n∈N*)
(1)設(shè)bn=
1
Tn
,求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)cn=2n•bn,求證數(shù)列{cn}的前n項和Sn;
(3)設(shè)An=
T
e
1
+
T
e
2
+…
T
e
n
,求證:an+1-
1
2
An≤-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Tn為數(shù)列{an}的前n項的積,即Tn=a1•a2…an
(1)若Tn=n2,求a3a4a5的值;
(2)若數(shù)列{an}各項都是正數(shù),且滿足Tn=
a
2
n
4
((n∈N*),證明數(shù)列{log2an}為等比數(shù)列,并求{an}的通項公式;
(3)數(shù)列{an}共有100項,且滿足以下條件:①a1•a2…a100=2;②等式a1•a2…ak+ak+1•ak+2…a100=k+2對1≤k≤99,k∈N*恒成立.試問符合條件的數(shù)列共有多少個?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省常州市武進區(qū)橫山橋高級中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)Tn為數(shù)列{an}的前n項之積,滿足Tn=1-an(n∈N*).
(1)設(shè),證明數(shù)列{bn}是等差數(shù)列,并求bn和an;
(2)設(shè)Sn=T12+T22+…+Tn2求證:an+1-<Sn≤an-

查看答案和解析>>

同步練習(xí)冊答案