16.若復(fù)數(shù)(2-i)(a+2i)是純虛數(shù),則實(shí)數(shù)a=-1.

分析 利用復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義即可得出.

解答 解:∵復(fù)數(shù)(2-i)(a+2i)=(2a+2)+(4-a)i是純虛數(shù),
∴2a+2=0,4-a≠0,
解得a=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}}\right.$,則z=x-2y的最大值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知橢圓$\frac{x^2}{4}+\frac{y^2}{m}=1$過點(diǎn)B(0,4),則此橢圓上任意一點(diǎn)到兩焦點(diǎn)的距離的和是(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列四個(gè)命題:
①?x0∈R,使${x_0}^2+2{x_0}+3=0$;
②命題“?x0∈R,lgx0>0”的否定是“?x∈R,lgx<0”;
③如果a,b∈R,且a>b,那么a2>b2;
④“若α=β,則sinα=sinβ”的逆否命題為真命題.
其中正確的命題是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.拋物線y2=2x的準(zhǔn)線方程是( 。
A.y=-1B.$y=-\frac{1}{2}$C.x=-1D.$x=-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“x2-1=0”是“x=1”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)三棱柱ABC-A1B1C1體積為V,E,F(xiàn),G分別是AA1,AB,AC的中點(diǎn),則三棱錐E-AFG體積是( 。
A.$\frac{1}{6}V$B.$\frac{1}{12}V$C.$\frac{1}{16}V$D.$\frac{1}{24}V$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)i是虛數(shù)單位,復(fù)數(shù)1-2i的虛部是( 。
A.-2B.2C.-2iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知Sn為各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和,a1∈(0,2),an2+3an+2=6Sn
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,若對(duì)?n∈N*,t≤4Tn恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

同步練習(xí)冊答案