已知不等式對任意恒成立,則實數(shù)a的取值范圍為(   )

   A.                  B.                  C.               D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

a2(n≥4,n∈N*)個正數(shù)排成一個n行n列的數(shù)陣:
精英家教網(wǎng)
其中aik(1≤i≤n,1≤k≤n,k∈N*)表示該數(shù)陣中位于第i行第k列的數(shù),已知該數(shù)陣每一行的數(shù)成等差數(shù)列,每一列的數(shù)成公比為2的等比數(shù)列,a23=8,a34=20.
(1)求a11和aik;
(2)設(shè)An=a1n+a2(n-1)+a3(n-2)+…+an1,是否存在整數(shù)p使得不等式An≥11n+p對任意的n∈N*恒成立,如果存在,求出p的最大值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶山區(qū)一模)已知函數(shù)f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差數(shù)列.
(1)求數(shù)列{an}(n∈N*)的通項公式;
(2)設(shè)g(k)是不等式log2x+log2(3
ak
-x
)≥2k+3(k∈N*)整數(shù)解的個數(shù),求g(k);
(3)記數(shù)列{
12
an
}
的前n項和為Sn,是否存在正數(shù)λ,對任意正整數(shù)n,k,使Sn
ak
<λ2恒成立?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•撫州模擬)已知:數(shù)列{an},{bn}中,a1=0,b1=1,且當(dāng)n∈N*時,an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求最小自然數(shù)k,使得當(dāng)n≥k時,對任意實數(shù)λ∈[0,1],不等式(2λ-3)bn≥(2λ-4)an+(λ-3)恒成立;
(3)設(shè)dn=
1
b1
+
1
b2
+…+
1
bn
(n∈N*),求證:當(dāng)n≥2都有dn2>2(
d2
2
+
d3
3
+…+
dn
n
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)個正數(shù)排成一個列的數(shù)陣:

第1列

第2列

第3列

第1行

第2行

第3行

       其中表示該數(shù)陣中位于第行第列的數(shù)。已知該數(shù)陣每一行的數(shù)成等差數(shù)列,每一列的數(shù)成公比為2的等比數(shù)列,

   (1)求;   (2)設(shè),求;

   (3)在(2)的條件下,若不等式對任意的恒成立,求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江杭州七校高二下期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為,

由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價于,

當(dāng)時,;當(dāng)時,;

,所以猜想,的最小值為.     …………8分

下證不等式對任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時,,成立.

假設(shè)當(dāng)時,不等式成立,

當(dāng)時,, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

方法二:單調(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項公式,        …………10分

,    …………12分

所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

同步練習(xí)冊答案