設(shè)不等式組所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為f(n)(n∈N*).
(1)求f(1),f(2)的值及f(n)的表達(dá)式;
(2)記,若對(duì)于一切正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,其中bn=2f(n),問(wèn)是否存在正整數(shù)n,t,使成立?若存在,求出正整數(shù)n,t;若不存在,說(shuō)明理由.
(1)由題意,作圖易得f(1)=3,f(2)=6. 一般地,由,,得. 又(n∈N*),∴. ∴Dn內(nèi)的整點(diǎn)在直線x=1和x=2上. 記直線為l,l與直線x=1和x=2的交點(diǎn)的縱坐標(biāo)分別為y1,y2, 則y1=-n+3n=2n,y2=-2n+3n=n. ∴f(n)=3n(n∈N*). (2)由(1),得, ∴. ∴當(dāng)n≥3時(shí),,且. 于是T2,T3是Tn的最大項(xiàng),故m≥. (3)假設(shè)存在正整數(shù)n,t使得上面的不等式成立, 由(Ⅰ),有bn=8n,∴. 不等式,即, 解得. ∴n=t=1. 即存在正整數(shù)n=1,t=1,使成立. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:廣東省培正中學(xué)2011-2012學(xué)年高二第一學(xué)期期中考考試數(shù)學(xué)理科試題 題型:044
已知(x,y)(x,y∈R)為平面上點(diǎn)M的坐標(biāo).
(1)設(shè)集合P={―4,―3,―2,0},Q={0,1,2},從集合P中隨機(jī)取一個(gè)數(shù)作為x,從集合Q中隨機(jī)取一個(gè)數(shù)作為y,求點(diǎn)M在y軸上的概率;
(2)設(shè)x∈[0,3],y∈[0,4],求點(diǎn)M落在不等式組:所表示的平面區(qū)域內(nèi)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com