已知:
a
=(2cosx,sinx),
b
=(
3
cosx,2cosx).設(shè)函數(shù)f(x)=
a
b
-
3
.(x∈R)
求:(1)f(x)的最小正周期;
(2)f(x)的單調(diào)增區(qū)間;
(3)若x∈[-
π
4
,
π
4
]時,求f(x)的值域.
分析:(1)利用向量的數(shù)量積公式求出函數(shù)f(x),利用三角函數(shù)的二倍角公式和公式asinα+bcosα=
a2b2
sin(x+β)
化簡函數(shù)f(x),利用三角函數(shù)的周期公式求出f(x)的周期.
(2)通過整體處理的思想令三角函數(shù)的整體角在正弦的遞增區(qū)間上,解不等式求出三角函數(shù)的遞增區(qū)間.
(3)求出整體角的范圍,利用三角函數(shù)的圖象求出相應(yīng)函數(shù)的值域.
解答:解:f(x)=
a
b
3
=2
3
cos2x+2sinxcosx-
3

=sin2x+
3
(2cos2x-1)
=sin2x+
3
cos2x
=2sin(2x+
π
3
)

(1)函數(shù)f(x)的最小正周期最小正周期為T=
2

(2)由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2

2kπ-
6
≤2x≤2kπ+
π
6
kπ-
12
≤x≤kπ+
π
12
,??(k∈Z)

∴函數(shù)f(x)的單調(diào)增區(qū)間為[kπ-
12
,kπ+
π
12
],?(k∈Z)

(3)∵x∈[-
π
4
,
π
4
]
,∴2x∈[-
π
2
π
2
]
,
2x+
π
3
∈[-
π
6
,
6
]
,∴sin(2x+
π
3
)∈[-
1
2
,1]
,
∴f(x)∈[-1,2]
點評:本題考查向量的數(shù)量積公式、三角函數(shù)的二倍角公式、三角函數(shù)的周期公式、整體思想求三角函數(shù)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若向量
a
b
的夾角為60°,則直線xcosα-ysinα+
1
2
=0
與圓(x-cosβ)2+(y+sinβ)2=
1
2
的位置關(guān)系是(  )
A、相交B、相切
C、相離D、相交且過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
.
a
=( 2cosα,2sinα),
.
b
=( 3sosβ,3sinβ),向量
.
a
.
b
的夾角為30°則cos(α-β)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),若
a
b
的夾角為60°,則直線2xcosα-2ysinα+1=0與圓(x-cosβ)2+(y+sinβ)2=1的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ),
a
b
的夾角為60°,則直線xcosα-ysinα+1=0與圓(x-cosβ)2+(y+sinβ)2=1的位置關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•德州二模)已知向量
a
=(2cosωx,-1),
b
=(
3
sinωx+cosωx,1)(ω>0),函數(shù)f(x)=
a
b
的最小正周期為π.
(I)求函數(shù)f(x)的表達(dá)式及最大值;
(Ⅱ)若在x∈[0,
π
2
]
上f(x)≥a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案