已知向量|數(shù)學(xué)公式-數(shù)學(xué)公式|=1,|數(shù)學(xué)公式|=|數(shù)學(xué)公式|=1則(數(shù)學(xué)公式+數(shù)學(xué)公式2的值為


  1. A.
    2
  2. B.
    數(shù)學(xué)公式
  3. C.
    3
  4. D.
    數(shù)學(xué)公式
C
分析:由|-|=1,兩邊同時平方結(jié)合||=||=1可求,代入(+2=可求
解答:∵|-|=1,||=||=1


∴(+2==3
故選C
點(diǎn)評:本題主要考察了平面向量的數(shù)量積的性質(zhì)的簡單應(yīng)用,屬于基礎(chǔ)性試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
,
π
4
)
,曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a,b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
,
π
4
),曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a、b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量=(-1,2),=(3,m),若,則m=_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)在中,角的對邊分別為. 已知向量,,.

  (1) 求的值;

  (2) 若, , 求的值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三上學(xué)期第八次測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

、已知向量=(1,2), =(-2,1),k,t為正實(shí)數(shù),向量 = +(t+1), =-k+

(1)若,求k的最小值;

(2)是否存在正實(shí)數(shù)k、t,使?   若存在,求出k的取值范圍;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案