設奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式(x-1)f(x-1)<0的解集為( 。
分析:由函數(shù)奇偶性的性質(zhì),我們根據(jù)已知中奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,易作出符合題意的函數(shù)f(x)的草圖,
進而得到不等式(x-1)f(x-1)<0的解集.
解答:解:若奇函數(shù)f(x)在(0,+∞)上為增函數(shù),
則函數(shù)f(x)在(-∞,0)上也為增函數(shù),
又∵f(1)=0,∴f(-1)=0,
作出滿足題意的函數(shù)f(x)的草圖,如圖所示:

由圖知,
不等式(x-1)f(x-1)<0
?
x-1>0
f(x-1)<0
x-1<0
f(x-1)>0

?
x-1>0
0<x-1<1
x-1<0
-1<x-1<0
,
解得1<x<2或0<x<1.
所以不等式(x-1)f(x-1)<0的解集為(1,2)∪(0,1).
故選D.
點評:本題考查的知識點是奇偶性與單調(diào)性的綜合應用,其中奇函數(shù)在對稱區(qū)間上單調(diào)性相同,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、設奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式x[(f(x)-f(-x)]<0的解集為
(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設奇函數(shù)f(x)在[-1,1]上是增函數(shù),且f(-1)=-1,若函數(shù)f(x)≤t2-2at+1對所有的x∈[-1,1]都成立,則當a∈[-1,1]時,t的取值范圍是( 。
A、-2≤t≤2
B、-
1
2
≤t≤
1
2
C、t≥2或t≤-2或t=0
D、t≥
1
2
或t≤-
1
2
或t=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設奇函數(shù)f(x)在(-∞,0)上為增函數(shù),且f(-1)=0,則不等式
f(-x)-f(x)
x
>0
的解集為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果設奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,則不等式
f(x)-f(-x)
x
<0的解集為( 。

查看答案和解析>>

同步練習冊答案