已知函數(shù)f(x)=log2數(shù)學公式,(x∈(-∞,-數(shù)學公式)∪(數(shù)學公式,+∞))
(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)判斷函數(shù)f(x)在區(qū)間(數(shù)學公式,+∞)上的單調(diào)性.

解:(1)函數(shù)f(x)是奇函數(shù).證明如下
證明:由題意可得函數(shù)的定義域關于原點對稱
因為f(-x)=log2=log2=log2(-1=-f(x),
所以函數(shù)f(x)是奇函數(shù).
(2)f(x)在區(qū)間(,+∞)上的單調(diào)遞減,證明如下
證明:令g(x)===
,則g(x1)-g(x2)=
==
,則x1-x2<0,
∴即g(x1)<g(x2
∴g(x)在()上單調(diào)遞減
由于y=log2g(x)在(0,+∞)單調(diào)遞增,由復合函數(shù)的單調(diào)性可知y=在()單調(diào)遞減
分析:(1)由f(-x)=log2=log2=log2(-1=-f(x),可得
(2)令g(x)===,只要利用單調(diào)性的定義先檢驗函數(shù)g(x)在()上單調(diào)性,結合y=log2g(x)在(0,+∞)單調(diào)性及復合函數(shù)的單調(diào)性可判斷
點評:本題主要考查了奇偶函數(shù)的定義、函數(shù)單調(diào)性的定義在判斷函數(shù)的奇偶性、單調(diào)性中中的應用,解題的關鍵是熟練掌握基本定義、基本方法
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案