(2013•廣州一模)假設關于某種汽車的使用年限x和所支出的維修費用y(萬元)有如表統(tǒng)計資料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
根據(jù)上表可得回歸方程
?
y
=1.23x+
?
a
,據(jù)此模型估計使用年限為10年時,維修費用約為
12.38
12.38
 萬元.(結(jié)果保留兩位小數(shù))
分析:根據(jù)所給的數(shù)據(jù)求出這組數(shù)據(jù)的橫標和縱標的平均數(shù),即這組數(shù)據(jù)的樣本中心點,根據(jù)樣本中心點在線性回歸直線上,把樣本中心點代入求出a的值,寫出線性回歸方程,代入x的值,預報出結(jié)果.
解答:解:∵由表格可知
.
x
=
2+3+4+5+6
5
=4,
.
y
=
2.2+3.8+5.5+6.5+7.0
5
=5,
∴這組數(shù)據(jù)的樣本中心點是(4,5),
根據(jù)樣本中心點在線性回歸直線上,
∴5=a+1.23×4,
∴a=0.08,
∴這組數(shù)據(jù)對應的線性回歸方程是y=1.23x+0.08,
∵x=10,
∴y=1.23×10+0.08=12.38,
故答案為:12.38.
點評:本題考查線性回歸方程,考查樣本中心點,做本題時要注意本題把利用最小二乘法來求線性回歸方程的系數(shù)的過程省掉,只要求a的值,這樣使得題目簡化,注意運算不要出錯.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•廣州一模)
1
0
cosx
dx=
sin1
sin1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州一模)已知經(jīng)過同一點的n(n∈N*,n≥3)個平面,任意三個平面不經(jīng)過同一條直線.若這n個平面將空間分成f(n)個部分,則f(3)=
8
8
,f(n)=
n2-n+2
n2-n+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州一模)函數(shù)f(x)=
2-x
+ln(x-1)
的定義域為
(1,2]
(1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州一模)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點M為PC的中點.
(1)求證:PA∥平面BMD;
(2)求證:AD⊥PB;
(3)若AB=PD=2,求點A到平面BMD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州一模)已知n∈N*,設函數(shù)fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函數(shù)y=f2(x)-kx(k∈R)的單調(diào)區(qū)間;
(2)是否存在整數(shù)t,對于任意n∈N*,關于x的方程fn(x)=0在區(qū)間[t,t+1]上有唯一實數(shù)解?若存在,求t的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案