如圖,已知橢圓C:x2+
y2
a2
=1(a>1)
的離心率為e,點F為其下焦點,點O為坐標原點,過F的直線l:y=mx-c(其中c=
a2-1
)與橢圓C相交于P,Q兩點,且滿足:
OP
OQ
=
a2(c2-m2)-1
2-c2

(Ⅰ)試用a表示m2;
(Ⅱ)求e的最大值;
(Ⅲ)若e∈(
1
3
,
1
2
)
,求m的取值范圍.
(Ⅰ)直線l:y=mx-c代入橢圓方程,消去x,可得(a2+m2)x2-2mcx-1=0
設P(x1,y1),Q(x2,y2),則x1+x2=
2mc
a2+m2
,x1x2=
-1
a2+m2

∴y1y2=(mx1-c)(mx2-c)=
a2(c2-m2)
a2+m2
,
OP
OQ
=
a2(c2-m2)-1
2-c2

-1
a2+m2
+
a2(c2-m2)
a2+m2
=
a2(c2-m2)-1
2-c2
,
∴a2+m2=2-c2=2-(a2-1),
∴m2=3-2a2;
(Ⅱ)∵c=
a2-1
,m2=3-2a2,
∴3(a2-c2)-2a2≥0,
∴a2≥3c2,
∴e2
1
3

∴e的最大值
3
3
;
(Ⅲ)∵e∈(
1
3
1
2
)
,
∴e2∈(
1
9
,
1
4
),
1
9
a2-1
a2
1
4
,
9
8
a2
4
3
,
∵m2=3-2a2,
1
3
m2
3
4
,
∴m的取值范圍為(-
3
2
,-
3
3
)∪(
3
3
3
2
)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在原點,焦點在x軸上,左右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點(1,
3
2
)在橢圓C上.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為
12
2
7
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F是拋物線y2=4x上的焦點,P是拋物線上的一個動點,若動點M滿足
FP
=2
FM
,則M的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=12x,點M(-1,0),過M的直線l交拋物線C于A,B兩點.
(Ⅰ)若線段AB中點的橫坐標等于2,求直線l的斜率;
(Ⅱ)設點A關于x軸的對稱點為A′,求證:直線A′B過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C的頂點在坐標原點,焦點在x軸上,拋物線C上的點M(2,m)到焦點F的距離為3.
(Ⅰ)求拋物線C的方程:
(Ⅱ)過點(2,0)的直線l與拋物線C交于A、B兩點,若|AB|=4
6
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,過拋物線y2=2px(p>0)的焦點F的兩條互相垂直的直線與拋物線分別交于點A、B和C、D;拋物線上的點T(2,t)(t>0)到焦點的距離為3.
(1)求p、t的值;
(2)當四邊形ACBD的面積取得最小值時,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直線l:y=kx+1與雙曲線C:3x2-y2=1相交于不同的A,B兩點.
(1)求AB的長度;
(2)是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過坐標原點?若存在,求出k的值,若不存在,寫出理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線C:x2=2py(p>0)的焦點為F,O為坐標原點;當拋物線上點N的縱坐標為1時,|NF|=2,已知直線l經(jīng)過拋物線C的焦點F,且與拋物線C交于A,B兩點
(1)求拋物線C的方程;
(2)若△AOB的面積為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,DA⊥AB,AD=3,AB=4,BC=
3
,點E在線段AB的延長線上.若曲線段DE(含兩端點)為某曲線L上的一部分,且曲線L上任一點到A、B兩點的距離之和都相等.
(1)建立恰當?shù)闹苯亲鴺讼,求曲線L的方程;
(2)根據(jù)曲線L的方程寫出曲線段DE(含兩端點)的方程;
(3)若點M為曲線段DE(含兩端點)上的任一點,試求|MC|+|MA|的最小值,并求出取得最小值時點M的坐標.

查看答案和解析>>

同步練習冊答案