【題目】在R上定義運算:ab=ab+2a+b,則滿足x(x﹣2)<0的實數(shù)x的取值范圍為(
A.(0,2)
B.(﹣2,1)
C.(﹣∞,﹣2)∪(1,+∞)
D.(﹣1,2)

【答案】B
【解析】解:∵x⊙(x﹣2)=x(x﹣2)+2x+x﹣2<0,
∴化簡得x2+x﹣2<0即(x﹣1)(x+2)<0,
得到x﹣1<0且x+2>0①或x﹣1>0且x+2<0②,解出①得﹣2<x<1;解出②得x>1且x<﹣2無解.
∴﹣2<x<1.
故選B
【考點精析】通過靈活運用解一元二次不等式,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣2x+6y=0,則圓心P及半徑r分別為(
A.圓心P(1,3),半徑r=10
B.圓心P(1,3),半徑
C.圓心P(1,﹣3),半徑r=10
D.圓心P(1,﹣3),半徑

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形, ,點的中點.

(1)證明:

(2)設(shè)點在線段上,且平面,若平面平面,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(1)求a,b的值;
(2)判斷并證明函數(shù)y=f(x)在區(qū)間(﹣1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中直線的傾斜角為,且經(jīng)過點,以坐標(biāo)系的原點為極點, 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點,過點的直線與曲線相交于兩點,且

(1)平面直角坐標(biāo)系中,求直線的一般方程和曲線的標(biāo)準(zhǔn)方程;

(2)求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求實數(shù)a的值及f(x)的極值;
(Ⅱ)是否存在區(qū)間(t,t+ )(t>0),使函數(shù)f(x)在此區(qū)間上存在極值和零點?若存在,求實數(shù)t的取值范圍,若不存在,請說明理由;
(Ⅲ)如果對任意的 ,有|f(x1)﹣f(x2)|≥k| |,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=x3﹣12x+8在區(qū)間[﹣3,3]上的最大值與最小值分別為M,m,則M﹣m的值為(
A.16
B.12
C.32
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),( )為定義域上的增函數(shù), 是函數(shù)的導(dǎo)數(shù),且的最小值小于等于0.

(1)求的值;

(2)設(shè)函數(shù),且,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C1 和圓C2:x2+y2=b2 , 已知圓C2將橢圓C1的長軸三等分,且圓C2的面積為π.橢圓C1的下頂點為E,過坐標(biāo)原點O且與坐標(biāo)軸不重合的任意直線l與圓C2相交于點A,B,直線EA,EB與橢圓C1的另一個交點分別是點P,M.
(I)求橢圓C1的方程;
(Ⅱ)求△EPM面積最大時直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案