已知函數(shù)f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=sinx.當(dāng)x1>x2>π時(shí),使數(shù)學(xué)公式恒成立的函數(shù)是


  1. A.
    f1(x)=x2
  2. B.
    f2(x)=2x
  3. C.
    f3(x)=log2x
  4. D.
    f4(x)=sinx
C
分析:判斷出函數(shù)圖象的趨勢(shì),得到函數(shù)值的平均值與自變量的平均值的函數(shù)值的大。
解答:由題意,當(dāng)x1>x2>π時(shí),使恒成立,圖象呈上凸趨勢(shì)
由于f1(x)=x2,f2(x)=2x,f4(x)=sinx在x1>x2>π上的圖象為圖象呈下凹趨勢(shì),
不成立
故選C.
點(diǎn)評(píng):解決一些基本函數(shù)的性質(zhì)問題時(shí),可利用函數(shù)圖象判斷出函數(shù)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f1(x)=e|x-2a+1|,f2(x)=e|x-a|+1,x∈R.
(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;
(2)若|f1(x)-f2(x)|=f2(x)-f1(x)對(duì)于任意的實(shí)數(shù)x∈R恒成立,求a的取值范圍;
(3)當(dāng)4≤a≤6時(shí),求函數(shù)g(x)=
f1(x)+f2(x)
2
-
|f1(x)-f2(x)|
2
在x∈[1,6]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=lg(|x|+1),將它們分別寫在六張卡片上,放在一個(gè)盒子中,
(Ⅰ)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得到一個(gè)新函數(shù),求所得的函數(shù)是奇函數(shù)的概率;
(Ⅱ)從盒子中任取兩張卡片,已知其中一張卡片上的函數(shù)為奇函數(shù),求另一張卡片上的函數(shù)也是奇函數(shù)的概率;
(Ⅲ)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f1(x)=sinx,且fn+1(x)=fn′(x),其中n∈N*,求f1(x)+f2(x)+…+f100(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧德模擬)已知函數(shù)f1(x)=
1
2
x2,f2(x)=alnx(a∈R)•
(I)當(dāng)a>0時(shí),求函數(shù).f(x)=f1(x)•f2(x)的極值;
(II)若存在x0∈[1,e],使得f1(x0)+f2(x0)≤(a+1)x0成立,求實(shí)數(shù)a的取值范圍;
(III)求證:當(dāng)x>0時(shí),lnx+
3
4x2
-
1
ex
>0.
(說明:e為自然對(duì)數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f1(x)=mx2的圖象過點(diǎn)(1,1),函數(shù)y=f2(x)的圖象關(guān)于直線x=a對(duì)稱,且x≥a時(shí)f2(x)=x-a,若f(x)=f1(x)f2(x).
(1)求函數(shù)f(x)的解析式.
(2)求函數(shù)y=f(x)在區(qū)間[2,3]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案