【題目】某公司擬設(shè)計一個扇環(huán)形狀的花壇(如圖所示),該扇環(huán)是由以點O為圓心的兩個同心圓弧和延長后通過點AD的兩條線段圍成.設(shè)圓弧 、 所在圓的半徑分別為f(x)、R米,圓心角為θ(弧度).
(1)若θ= ,r1=3,r2=6,求花壇的面積;
(2)設(shè)計時需要考慮花壇邊緣(實線部分)的裝飾問題,已知直線部分的裝飾費用為60元/米,弧線部分的裝飾費用為90元/米,預(yù)算費用總計1200元,問線段AD的長度為多少時,花壇的面積最大?

【答案】
(1)解:設(shè)花壇的面積為S平方米.

= =

答:花壇的面積為 ;


(2)解: 的長為r1θ米, 的長為r2θ米,線段AD的長為(r2﹣r1)米

由題意知602(r2﹣r1)+90(r1θ+r2θ)=1200

即4(r2﹣r1)+3(r2θ+r1θ)=40*

由*式知,

記r2﹣r1=x,則0<x<10

所以 =

當(dāng)x=5時,S取得最大值,即r2﹣r1=5時,花壇的面積最大.

答:當(dāng)線段AD的長為5米時,花壇的面積最大.


【解析】(1)設(shè)花壇的面積為S平方米. ,即可得出結(jié)論;(2)記r2﹣r1=x,則0<x<10,所以 = ,即可得出結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解扇形面積公式的相關(guān)知識,掌握若扇形的圓心角為,半徑為,弧長為,周長為,面積為,則,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,過E點做EF⊥PB交PB于點F.求證:
(1)PA∥平面DEB;
(2)PB⊥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,體積為 ,底面是邊長為 的正三角形,若P為底面A1B1C1的中心,則PA與平面A1B1C1所成角的大小為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,△PAB與△PAD均是以A為直角頂點的等腰直角三角形,點F是PB的中點,點E是邊BC上的任意一點.

(1)求證:AF⊥EF;
(2)求二面角A﹣PC﹣B的平面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)的圖象關(guān)于點(1,0)對稱,且當(dāng)x∈[1,2]時,f(x)=﹣2x+2,若函數(shù)y=f(x)﹣loga(|x|+1)恰好有8個零點,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2 的正方體ABCD﹣A1B1C1D1中,M是A1B1的中點,點P是側(cè)面CDD1C1上的動點,且MP∥截面AB1C,則線段MP長度的取值范圍是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,其中0<ω<2; (Ⅰ)若f(x)的最小正周期為π,求f(x)的單調(diào)增區(qū)間;
(Ⅱ)若函數(shù)f(x)的圖象的一條對稱軸為 ,求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若| |=1,| |=m,| + |=2.
(1)若| +2 |=3,求實數(shù)m的值;
(2)若 + 的夾角為 ,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,BC= ,AB=CC1=2,∠BCC1= ,點E在棱BB1上.

(1)求C1B的長,并證明C1B⊥平面ABC;
(2)若BE=λBB1 , 試確定λ的值,使得二面角A﹣C1E﹣C的余弦值為

查看答案和解析>>

同步練習(xí)冊答案