18.若1-$\sqrt{2}$i(i是虛數(shù)單位)是關(guān)于x的實(shí)系數(shù)方程x2+bx+c=0的一個(gè)復(fù)數(shù)根,則( 。
A.b=2,c=3B.b=2,c=-1C.b=-2,c=-1D.b=-2,c=3

分析 利用實(shí)系數(shù)一元二次的虛根成對(duì)原理、根與系數(shù)的關(guān)系即可得出.

解答 解:∵1-$\sqrt{2}$i是關(guān)于x的實(shí)系數(shù)方程x2+bx+c=0的一個(gè)復(fù)數(shù)根,
∴1+$\sqrt{2}$i是關(guān)于x的實(shí)系數(shù)方程x2+bx+c=0的一個(gè)復(fù)數(shù)根,
∴$\left\{\begin{array}{l}{1-\sqrt{2}i+1+\sqrt{2}i=-b}\\{(1-\sqrt{2}i)(1+\sqrt{2}i)=c}\end{array}\right.$,解得b=-2,c=3.
故選:D.

點(diǎn)評(píng) 本題考查了實(shí)系數(shù)一元二次的虛根成對(duì)原理、根與系數(shù)的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,且滿足an+1=Sn+2n+1(n∈N*).
(1)證明數(shù)列{$\frac{{S}_{n}}{{a}_{n}}$}為等差數(shù)列.
(2)求S1+S2+…+Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若“a>b”,則“a3>b3”是真命題(填:真、假)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)θ是兩個(gè)非零向量$\overrightarrow{a}$、$\overrightarrow$的夾角,若對(duì)任意實(shí)數(shù)t,|$\overrightarrow{a}$+t$\overrightarrow$|的最小值為1,則下列判斷正確的是(  )
A.若|$\overrightarrow{a}$|確定,則θ唯一確定B.若|$\overrightarrow$|確定,則θ唯一確定
C.若θ確定,則|$\overrightarrow$|唯一確定D.若θ確定,則|$\overrightarrow{a}$|唯一確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在△ABC中,若AB=AC=3,cos∠BAC=$\frac{1}{2}$,$\overrightarrow{DC}$=2$\overrightarrow{BD}$,則$\overrightarrow{AD}•\overrightarrow{BC}$=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在等比數(shù)列{an}中,a2=1,a6=9,則a4=(  )
A.3B.-3C.±3D.$±\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF=3$\sqrt{6}$.
(1)(文理)求證:AC⊥平面BDE;
(2)(理)求二面角F-BE-D的余弦值;
(文)求三棱錐F-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△OAB中,已知OA=5,OB=4,點(diǎn)P是AB的中點(diǎn),則$\overrightarrow{OP}•\overrightarrow{AB}$=(  )
A.10B.-$\frac{9}{2}$C.20D.-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cost}\\{y=-2+2sint}\end{array}\right.$ (t為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,直線l的方程為$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=1.
(1)求圓C的普通方程及直線l的直角坐標(biāo)方程;
(2)求圓C上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案