分析 (1)設(shè)t=log3x,由$\frac{1}{9}$≤x≤27,利用對數(shù)的單調(diào)性質(zhì)可求t的取值范圍;
(2)由(1)知,y=-(t+2)(t-1),為開口向下的拋物線,其對稱軸為t=-$\frac{1}{2}$,從而可求f(x)的最小值,及f(x)取得最小值時x的值.
解答 解:(1)f(x)=-log3(9x)•log3$\frac{x}{3}$=-(log3x+2)•(log3x-1),
∵t=log3x,$\frac{1}{9}$≤x≤27,
∴t∈[-2,3].
(2)y=-(t+2)(t-1),開口向下,對稱軸為t=-$\frac{1}{2}$,
∴當(dāng)t=3時取得最小值,ymin=-5×2=-10,此時x=27.
點評 本題考查二次函數(shù)的性質(zhì),考查對數(shù)函數(shù)的單調(diào)性與換元法的應(yīng)用,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2π+8\sqrt{2}+2$ | B. | $2π+8\sqrt{2}+1$ | C. | $π+8\sqrt{2}+1$ | D. | $π+8\sqrt{2}+2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k>1 | B. | k>1或k<$\frac{1}{4}$ | C. | k<$\frac{1}{4}$ | D. | 以上答案 都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)和分別是上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是( )
A.是偶函數(shù) B.是奇函數(shù)
C. 是偶函數(shù) D.是奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-y+1=0 | B. | x-y-1=0 | C. | x-y-3=0 | D. | x-y+3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com