若直線x-y+1=0與圓(x-a)
2+y
2=2有公共點,則實數(shù)a的取值范圍是
.
考點:直線與圓相交的性質(zhì)
專題:直線與圓
分析:利用圓心與直線的距離等于小于圓的半徑,然后求解a的范圍.
解答:
解:圓(x-a)
2+y
2=2的圓心(a,0),半徑為
,
直線x-y+1=0與圓(x-a)
2+y
2=2有公共點,
則
≤
,
所以|a+1|≤2,
解得實數(shù)a取值范圍是[-3,1].
故答案為:[-3,1].
點評:本題考查直線與圓的位置關(guān)系,點到直線的距離公式的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)是定義域(-1,1)的奇函數(shù),而且f(x)是減函數(shù),如果f(m-2)+f(2m-3)>0,那么實數(shù)m的取值范圍是( )
A、(1,) |
B、(-∞,) |
C、(1,3) |
D、(,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若非零函數(shù)f(x)對任意實數(shù)a,b均有f(a+b)=f(a)•f(b),且當x<0時,f(x)>1.
(1)求證:f(x)>0;
(2)求證:f(x)為減函數(shù);
(3)當f(4)=
時,解不等式f(x-3)•f(5)≤
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知雙曲線x
2-
=1的右焦點與拋物線y
2=8x的焦點重合,則它的焦點到其漸近線的距離為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
等比數(shù)列{a
n}的前n項和為S
n,若S
2n=3(a
1+a
3+…+a
2n-1),a
1a
2a
3=8,則a
10等于
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
下列各式計算正確的是( 。
A、3x2-2x2=x2 |
B、(-2a)2=-2a2 |
C、(a+b)2=a2+b2 |
D、-2(a-1)=-2a-1 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
用秦九韶算法計算多項式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4時的值時,V2的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
點(1,2)關(guān)于直線2x+y-1=0的對稱點坐標是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
二次函數(shù)y=-(x-2)2-1的圖象的開口方向和頂點坐標是( )
A、開口向上,(-2,-1) |
B、開口向上,(-2,-1) |
C、開口向下,(2,-1) |
D、開口向下,(-2,-1) |
查看答案和解析>>