如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于D,DE⊥AC交AC延長線于點E,OE交AD于點F.
(Ⅰ)求證:DE是⊙O的切線;
(Ⅱ)若數(shù)學公式,求數(shù)學公式的值.

證明:(Ⅰ)連接OD,
∵OA=OD,∴∠ODA=∠OAD
∵∠BAC的平分線是AD
∴∠OAD=∠DAC
∴∠DAC=∠ODA,可得OD∥AE…(3分)
又∵DE⊥AE,∴DE⊥OD
∵OD是⊙O的半徑
∴DE是⊙O的切線.…(5分)
(Ⅱ)連接BC、DB,過D作DH⊥AB于H,
∵AB是⊙O的直徑,
∴∠ACB=90°,
Rt△ABC中,
∵OD∥AE,∴∠DOH=∠CAB,

∵Rt△HOD中,,
,設OD=5x,則AB=10x,OH=3x,
∴Rt△HOD中,DH==4x,AH=AO+OH=8x,
Rt△HAD中,AD2=AH2+DH2=80x2…(8分)
∵∠BAD=∠DAE,∠AED=∠ADB=90°
∴△ADE∽△ADB,可得,
∴AD2=AE•AB=AE•10x,而AD2=80x2
∴AE=8x
又∵OD∥AE,
∴△AEF∽△ODF,可得…(10分)
分析:(Ⅰ)根據(jù)OA=OD,得到∠ODA=∠OAD,結合AD是∠BAC的平分線,得到∠OAD=∠DAC=∠ODA,可得OD∥AE.再根據(jù)DE⊥AE,得到DE⊥OD,結合圓的切線的判定定理,得到DE是⊙O的切線.
(II)連接BC、DB,過D作DH⊥AB于H,因為AB是⊙O的直徑,所以在Rt△ACB中,求出,再利用OD∥AE,所以∠DOH=∠CAB,得到Rt△HOD中,=.設OD=5x,則AB=10x,OH=3x,用勾股定理,在Rt△HOD中算出DH=4x,再在Rt△HAD中,算出AD2=80x2.最后利用△ADE∽△ADB,得到AD2=AE•AB=AE•10x,從而AE=8x,再結合△AEF∽△ODF,得出
點評:本題以角平分線和圓中的垂直線段為載體,通過證明圓的切線和求線段的比,考查了相似三角形的性質(zhì)、相似三角形的判定、圓的切線的判定定理等知識點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設FC的中點為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源:南充高中2008-2009學年高二下學期第四次月考數(shù)學試題(理) 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.

(1)若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;

(2)在四面體P-ABC中,AP=AB=1,設.若動點M在四面體P-ABC表面上運動,并且總保持PB⊥AM.設為動點M的軌跡圍成的封閉圖形的面積關于角的函數(shù),求取最大值時,二面角A-PB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:四川省南充高中2008-2009學年高二下學期第四次月考數(shù)學文 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.

(1)若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;

(2)如圖,若四面體P-ABC中,AP=AB=1,AE⊥PB,垂足為E,AF⊥PC,垂足為F.設∠EAF=,為△AEF面積的函數(shù),求取最大值時二面角A-PB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,ABCD是正方形,E、F分別是ADBC邊上的點,EFAB,EFAC于點O,以EF為棱把它折成直二面角A-EF-D后,求證:不論EF怎樣移動,∠AOC是定值.

查看答案和解析>>

科目:高中數(shù)學 來源:四川省南充高中08-09學年高二下學期第四次月考(理) 題型:解答題

 如圖甲,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于AB的一點.

(1)若一個面體中有個面是直角三角形,則稱這個面體的直度為.那么四面體的直度為多少?說明理由;

(2)在四面體中,,設.若動點在四面體 表面上運動,并且總保持.設為動點的軌跡圍成的封閉圖形的面積關于角的函數(shù),求取最大值時,二面角的正切值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案