(本小題滿分12分)
分別是橢圓的左、右焦點,過斜率為1的直線相交于兩點,且成等差數(shù)列。
(Ⅰ)求的離心率;     
(Ⅱ)設點滿足,求的方程。

(1)
(2)
解:(I)由橢圓定義知,
,得                 ……………2分
的方程為,其中。
,,則A、B兩點坐標滿足方程組
化簡得    
                        ……………4分
因為直線AB斜率為1,所以
,  所以E的離心率…………7分
(Ⅱ)設AB的中點為,由(I)知,。
,得,即    得,從而
故橢圓E的方程為。             ……………………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
設圓過點P(0,2), 且在軸上截得的弦RG的長為4.

(1)求圓心的軌跡E的方程;
(2)過(0,1),作軌跡的兩條互相垂直的弦,設的中點分別為、,試判斷直線是否過定點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)已知橢圓的兩焦點為,,離心率.(1)求此橢圓的方程;(2)設直線,若與此橢圓相交于,兩點,且等于橢圓的短軸長,求的值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題10分)
,在平面直角坐標系中,已知向量,向量,,動點的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)點為當時軌跡E上的任意一點,定點的坐標為(3,0),
滿足,試求點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)中,A、B兩點的坐標分別是(-2,0)(2,0),AC、AB、BC成等差數(shù)列。
(1)求頂點C的軌跡方程;
(2)直線y=x-2與C點軌跡交于MN兩點,求線段MN長度。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P到點M(-1,0)的距離與點P到點N(1,0)的距離之比為
(1)求點P到軌跡方程H;
(2)過點M做H的切線,求點N到的距離;
(3)求H關于直線對稱的曲線方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)兩定點的坐標分別A(-1,0),B(2,0),動點M滿足條件,求動點M的軌跡方程并指出軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,以為圓心的圓與直線相切.
(1)求圓的方程;(2)圓軸相交于兩點,圓內(nèi)的動點使成等比數(shù)列,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是三角形的一個內(nèi)角,且,則方程所表示的曲線是(  )
A.焦點在軸上的橢圓B.焦點在軸上的橢圓
C.焦點在軸上的雙曲線D.焦點在軸上的雙曲線

查看答案和解析>>

同步練習冊答案