設F1,F(xiàn)2是雙曲線
x2
4
-y2=1
的左右焦點,點P在雙曲線上,且∠F1PF2=90°,則點P到x軸的距離為______.
設|PF1|=x,|PF2|=y,(x>y)
∵a2=4,∴根據(jù)雙曲線性質可知x-y=4,
∵∠F1PF2=90°,c=
4+1
=
5
,
∴x2+y2=20,
∴2xy=x2+y2-(x-y)2=4,
∴xy=2,
∴△F1PF2的面積為
1
2
xy=1,
設點P到x軸的距離為h,
SF1PF2=
1
2
•h•2c
=1,
∴h=
1
c
=
5
5

故答案為:
5
5
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知曲線
x=4cosθ
y=2
3
sinθ
上一點P到點A(-2,0),B(2,0)的距離之差為2.則△PAB為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線
x2
9
-
y2
16
=1
的兩個焦點F1、F2,點P在雙曲線上,若PF1⊥PF2,則△PF1F2面積是( 。
A.16B.32C.25D.50

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,過F1且垂直于x軸的直線與雙曲線交于A,B兩點,若△ABF2是鈍角三角形,則該雙曲線離心率的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線:x2-
y2
4
=1
的漸近線方程和離心率分別是(  )
A.y=±
1
2
x,e=
5
B.y=±2x,e=
3
C.y=±
1
2
x,e=
3
D.y=±2x,e=
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求與雙曲線x2-4y2=4有共同的漸近線,并且經(jīng)過點(2,
5
)
的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以拋物線y2=12x的焦點為圓心,且與雙曲線
x2
16
-
y2
9
=1
的兩條漸近線相切的圓的方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準線分別交于O、A、B三點,O為坐標原點.若雙曲線的離心率為2,△AOB的面積為
3
,則p=(  )
A.1B.
3
2
C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點在雙曲線
x2
9
-
y2
16
=1
上,且點M到左焦點的距離為7,則它到右焦點的距離為( 。
A.13B.1C.13或1D.非以上答案

查看答案和解析>>

同步練習冊答案