已知數(shù)列{an}的通項公式為an=-n2-2λn.(n∈N*),且是遞減數(shù)列,則λ的取值范圍為
(-
3
2
,+∞)
(-
3
2
,+∞)
分析:由題意可得 an+1<an,即-(n+1)2-2λ(n+1)<-n2-2λn,解不等式求得 λ>-
2n+1
2
恒成立,求出-
2n+1
2
的最大值,即可得到 λ的取值范圍.
解答:解:數(shù)列{an}的通項公式為an=-n2-2λn.(n∈N*),且是遞減數(shù)列,
∴an+1<an,即-(n+1)2-2λ(n+1)<-n2-2λn,即-n2-2n-1-2λn-2λ<-n2-2λn,即 2n+2λ+1>0,即 λ>-
2n+1
2
恒成立.
 由于n為正整數(shù),∴
2n+1
2
3
2
,∴-
2n+1
2
≤-
3
2
,即-
2n+1
2
的最大值為-
3
2

由于λ應(yīng)大于-
2n+1
2
 的最大值,故應(yīng)有  λ>-
3
2
,
故答案為 (-
3
2
,+∞).
點評:本題主要考查數(shù)列的函數(shù)特性,函數(shù)的恒成立為題,得到 an+1<an,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項為an=2n-1,Sn為數(shù)列{an}的前n項和,令bn=
1
Sn+n
,則數(shù)列{bn}的前n項和的取值范圍為( 。
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
,
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式是an=
an
bn+1
,其中a、b均為正常數(shù),那么數(shù)列{an}的單調(diào)性為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•東城區(qū)二模)已知數(shù)列{an}的通項公式是 an=
na
(n+1)b
,其中a、b均為正常數(shù),那么 an與 an+1的大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式為an=2n-5,則|a1|+|a2|+…+|a10|=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式為an=
1
n+1
+
n
求它的前n項的和.

查看答案和解析>>

同步練習(xí)冊答案