20.△ABC中,C為鈍角,設(shè)M=sin(A+B),N=sinA+sinB,P=cosA+cosB,則有( 。
A.M<N<PB.N<M<PC.M<P<ND.P<M<N

分析 利用兩角和與差的正弦與正弦函數(shù)的性質(zhì)易知M最小,再對N與P作差,利用輔助角公式及正弦函數(shù)的單調(diào)性即可得到答案.

解答 解:∵M(jìn)=sin(A+B)=sinAcosB+sinBcosA<sinA+sinB=N,
同理,M<P,即M最。
又N-P=sinA+sinB-(cosA+cosB)
=(sinA-cosA)+(sinB-cosB)
=$\sqrt{2}$sin(A-$\frac{π}{4}$)+$\sqrt{2}$sin(B-$\frac{π}{4}$)
=$\sqrt{2}$sin(B-$\frac{π}{4}$)-$\sqrt{2}$sin($\frac{π}{4}$-A);
設(shè)A<$\frac{π}{4}$,由C為鈍角,知A+B<$\frac{π}{2}$,
∴$\frac{π}{4}$>$\frac{π}{4}$-A>B-$\frac{π}{4}$>-$\frac{π}{4}$,
∴sin($\frac{π}{4}$-A)>sin(B-$\frac{π}{4}$),
∴N-P<0,即N<P;
∴M,N,P的大小關(guān)系為M<N<P.
故選:A

點(diǎn)評 本題考查兩角和與差的正弦與正弦函數(shù)的性質(zhì),作差判斷N與P的大小是難點(diǎn),也是關(guān)鍵,考查運(yùn)算求解能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.手機(jī)完全充滿電量,在開機(jī)不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時間稱為手機(jī)的待機(jī)時間.為了解A,B兩個不同型號手機(jī)的待機(jī)時間,現(xiàn)從某賣場庫存手機(jī)中隨機(jī)抽取A,B兩個型號的手機(jī)各5臺,在相同條件下進(jìn)行測試,統(tǒng)計(jì)結(jié)果如下:
手機(jī)編號12345
A型待機(jī)時間(h)120125122124124
B型待機(jī)時間(h)118123127120a
已知 A,B兩個型號被測試手機(jī)待機(jī)時間的平均值相等.
(Ⅰ)求a的值;
(Ⅱ)判斷A,B兩個型號被測試手機(jī)待機(jī)時間方差的大。ńY(jié)論不要求證明);
(Ⅲ)從被測試的手機(jī)中隨機(jī)抽取A,B型號手機(jī)各1臺,求至少有1臺的待機(jī)時間超過122小時的概率.
(注:n個數(shù)據(jù)x1,x2,…,xn的方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為數(shù)據(jù)x1,x2,…,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.命題“?x∈R,x2≤1”的否定是?x∈R,x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\sqrt{1-3x}$的定義域是(-∞,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函f(x)數(shù)的導(dǎo)數(shù)f′(x)=3x2-3ax,f(0)=b,a,b為實(shí)數(shù),1<a<2.若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,則a-b的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x+$\frac{1}{x}$,分別用定義法:
(1)判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)=x+$\frac{1}{x}$在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.$\sqrt{3}x+y=0$的傾斜角的大小是120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$α,β∈(\frac{π}{2},π)$,且$cosα=-\frac{4}{5},sinβ=\frac{5}{13}$,
(1)求sin(α+β),與與cos(α-β)的值;
(2)求tan(2α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知0<x<π,且滿足$sinx+cosx=\frac{7}{13}$.
求:
(i)sinx•cosx;
(ii)$\frac{5sinx+4cosx}{15sinx-7cosx}$.

查看答案和解析>>

同步練習(xí)冊答案