斜率為2的直線l上有三點(diǎn)P1(2,3),P2(1,b),P3(a,-5),則a-2b=________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過(guò)點(diǎn)A(1,2)、B(3,0),并且直線m:2x-3y=0平分圓C.
(1)求圓C的方程;
(2)過(guò)點(diǎn)D(0,3),且斜率為k的直線l與圓C有兩個(gè)不同的交點(diǎn)E、F,若|EF|≥2
3
,求k的取值范圍;
(3)若圓C關(guān)于點(diǎn)(
3
2
,1)
對(duì)稱的曲線為圓Q,設(shè)M(x1,y1)、P(x2,y2)(x1≠±x2)是圓Q上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為M1,點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問(wèn)m•n是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線c:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,且雙曲線的離心率為
5

(1)求雙曲線的方程;
(2)若有兩個(gè)半徑相同的圓c1,c2,它們的圓心都在x軸上方且分別在雙曲線c的兩漸近線上,過(guò)雙曲線的右焦點(diǎn)且斜率為-1的直線l與圓c1,c2都相切,求兩圓c1,c2圓心連線斜率的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖南模擬)設(shè)橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,離心率為
1
2
,在x軸負(fù)半軸上有一點(diǎn)B,且
BF2
=2
BF1

(1)若過(guò)A、B、F2三點(diǎn)的圓恰好與直線x-
3
y-3=0
相切,求橢圓C的方程;
(2)在(1)的條件下,過(guò)右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•山東)橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的左右焦點(diǎn)分別是F1,F(xiàn)2,離心率為
3
2
,過(guò)F1且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接PF1,PF2,設(shè)∠F1PF2的角平分線PM交C的長(zhǎng)軸于點(diǎn)M(m,0),求m的取值范圍;
(3)在(2)的條件下,過(guò)點(diǎn)P作斜率為k的直線l,使得l與橢圓C有且只有一個(gè)公共點(diǎn),設(shè)直線PF1,PF2的斜率分別為k1,k2,若k≠0,試證明
1
kk1
+
1
kk2
為定值,并求出這個(gè)定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案