13.某次比賽甲得分的莖葉圖如圖所示,若去掉一個(gè)最高分,去掉一個(gè)最低分,則剩下4個(gè)分?jǐn)?shù)的方差為14.

分析 求出剩下的4個(gè)分?jǐn)?shù)平均數(shù),代入方差公式,求出方差即可.

解答 解:剩下的4個(gè)分?jǐn)?shù)是:
42,44,46,52,
平均數(shù)是:46,
故方差是:$\frac{1}{4}$(16+4+0+36)=14,
故答案為:14.

點(diǎn)評(píng) 本題考查了讀莖葉圖問(wèn)題,考查求平均數(shù)以及方差問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知a、b∈R,且2ab+2a2+2b2-9=0,若M為a2+b2的最小值,則約束條件$\left\{\begin{array}{l}0≤y≤\sqrt{{M^2}-{x^2}}\\ x-y≥-M\\ x+y≤M.\end{array}\right.$所確定的平面區(qū)域內(nèi)整點(diǎn)(橫坐標(biāo)縱坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)為( 。
A.9B.13C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.${e^{-2}},{2^{\frac{1}{e}}},ln2$三個(gè)數(shù)中最大的數(shù)是${2^{\frac{1}{e}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知A、B兩所大學(xué)的專業(yè)設(shè)置都相同(專業(yè)數(shù)均不小于2),數(shù)據(jù)顯示,A大學(xué)的各專業(yè)的男女生比例均高于B大學(xué)的相應(yīng)專業(yè)的男女生比例(男女生比例是指男生人數(shù)與女生人數(shù)的比). 據(jù)此,
甲同學(xué)說(shuō):“A大學(xué)的男女生比例一定高于B大學(xué)的男女生比例”;
乙同學(xué)說(shuō):“A大學(xué)的男女生比例不一定高于B大學(xué)的男女生比例”;
丙同學(xué)說(shuō):“兩所大學(xué)的全體學(xué)生的男女生比例一定高于B大學(xué)的男女生比例”.
其中,說(shuō)法正確的同學(xué)是乙.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$M:\frac{x^2}{a^2}+{y^2}=1({a>1})$右頂點(diǎn)、上頂點(diǎn)分別為A、B,且圓O:x2+y2=1的圓心到直線AB的距離為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓M的方程;
(2)若直線l與圓O相切,且與橢圓M相交于P,Q兩點(diǎn),求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)$f(x)=sin(ωπx-\frac{π}{6})(ω>0)$的最小正周期為$\frac{1}{5}$,則$f(\frac{1}{3})$的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知2cosA(bcosC+ccosB)=a.
(1)求角A的值;
(2)若$cosB=\frac{3}{5}$,求sin(B-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,已知平面α⊥β,α∩β=l,A,B是直線l上的兩點(diǎn),C,D是平面β內(nèi)的兩點(diǎn),且 DA⊥l,CB⊥l,DA=2,AB=4,CB=4,P是平面α上的一動(dòng)點(diǎn),且直線 PD,PC與平面α所成角相等,則二面角 P-BC-D的余弦值的最小值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若甲、乙、丙三組人數(shù)分別為18,24,30,現(xiàn)用分層抽樣方法從甲、乙、丙三組中共抽取12人,則在乙組中抽取的人數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案