已知函數(shù),其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)當(dāng)a≥1時,判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求a的取值范圍.
【答案】分析:(1)根據(jù)2f(1)=f(-1)建立等式關(guān)系,解之即可求出a的值;
(2)若a≥1,任取0≤x1<x2,然后通過化簡變形判定f(x1)-f(x2)與0的大小,從而確定函數(shù)f(x)在[0,+∞)上的單調(diào)性;
(3)根據(jù)函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)則任取1≤x1<x2,則f(x1)-f(x2)<0,從而求出a的范圍.
解答:解:(1)由2f(1)=f(-1),可得:,…(4分)
(2)若a≥1,任取0≤x1<x2
==…(6分)
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041989836/SYS201310241828200419898019_DA/6.png">,,所以…(8分)
因?yàn)閍≥1,則f(x1)-f(x2)>0,f(x)在[0,+∞)單調(diào)遞減     …(10分)
(3)任取1≤x1<x2,f(x1)-f(x2)=,因?yàn)閒(x)單調(diào)遞增,
所以f(x1)-f(x2)<0,又x1-x2<0,那么>0恒成立 (12分),…(14分)   所以…(16分)
點(diǎn)評:本題主要考查了函數(shù)求值以及函數(shù)單調(diào)性的判定和利用單調(diào)性求參數(shù)范圍等問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)(其中A>0,)的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象上一個最低點(diǎn)為.

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)已知函數(shù)(其中A>0,)的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象上一個最低點(diǎn)為.(Ⅰ)求的解析式;(Ⅱ)當(dāng),求的值域;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市汶上一中高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)若a=2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[2,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶七中高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(1)、若x=1是y=f(x)的一個極值點(diǎn),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)、若曲線y=f(x)與x軸有3個不同交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省武漢市武昌區(qū)高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),其中a>0且a≠1.
(1)求f(x)的解析式;
(2)判斷并證明f(x)的單調(diào)性;
(3)當(dāng)x∈(-∞,2)時,f(x)-4的值恒為負(fù)數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案