【題目】如圖,四棱錐P﹣ABCD中,PD⊥底面ABCD,且底面ABCD為平行四邊形,若∠DAB=60°,AB=2,AD=1.
(1)求證:PA⊥BD;
(2)若∠PCD=45°,求點D到平面PBC的距離h.

【答案】
(1)證明:∵AD=1,AB=2,∠DAB=60°,

∴BD2=AB2+AD2﹣2ABADcos60°=3,

∴AD2+BD2=AB2,

∴AD⊥BD,

∵PD⊥平面ABCD,BD平面ABCD,

∴PD⊥BD,又AD∩PD=D,

∴BD⊥平面PAD,

∵PA平面PAD,

∴BD⊥PA


(2)解:由(1)可知BC⊥BD,

∴SBCD= =

∵∠PCD=45°,∴PD=CD=2,

∴VPBCD= =

∵PC= CD=2 ,PB= = ,BC=1,

∴BC2+PB2=PC2,∴PB⊥BC,

∴SBCP= =

∴VDBCP= = ,

又VPBCD=VDBCP,∴ = ,

解得h=


【解析】(1)利用勾股定理逆定理證明AD⊥BD,結合BD⊥PD得出BD⊥平面PAD,故而PA⊥BD;(2)根據(jù)VPBCD=VDBCP列方程解出h.
【考點精析】本題主要考查了直線與平面垂直的性質的相關知識點,需要掌握垂直于同一個平面的兩條直線平行才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|2x+3|+|x﹣1|.
(1)解不等式f(x)>4;
(2)若x∈(﹣∞,﹣ ),不等式a+1<f(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的右焦點為( ,0),離心率為
(1)求橢圓C的標準方程;
(2)若動點P(x0 , y0)為橢圓C外一點,且點P到橢圓C的兩條切線相互垂直,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 的最小值為a+1,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有10個不同的產品,其中4個次品,6個正品.現(xiàn)每次取其中一個進行測試,直到4個次品全測完為止,若最后一個次品恰好在第五次測試時被發(fā)現(xiàn),則該情況出現(xiàn)的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設 ,則對任意實數(shù)a、b,若a+b≥0則(
A.f(a)+f(b)≤0
B.f(a)+f(b)≥0
C.f(a)﹣f(b)≤0
D.f(a)﹣f(b)≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,

(Ⅰ)求證:AC⊥A1B;
(Ⅱ)求二面角A﹣A1C﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,由于函數(shù)f(x)=sin(π﹣ωx)sin( +φ)﹣sin(ωx+ )sinφ(ω>0)的圖象部分數(shù)據(jù)已污損,現(xiàn)可以確認點C( ,0),其中A點是圖象在y軸左側第一個與x軸的交點,B點是圖象在y軸右側第一個最高點,則f(x)在下列區(qū)間中是單調的(
A.(0,
B.( ,
C.( ,2π)
D.(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正三棱錐P﹣ABC中,已知底面等邊三角形的邊長為6,側棱長為4.
(1)求證:PA⊥BC;
(2)求此三棱錐的全面積和體積.

查看答案和解析>>

同步練習冊答案