已知數(shù)列的前項(xiàng)和為,若,
⑴證明數(shù)列為等差數(shù)列,并求其通項(xiàng)公式;
⑵令,①當(dāng)為何正整數(shù)值時,:②若對一切正整數(shù),總有,求的取值范圍.
(1)證明詳見解析,;(2)①,②.
【解析】
試題分析:(1)關(guān)于和的遞推式,一般有兩種方法可解決,1:轉(zhuǎn)化為項(xiàng)的遞推式,根據(jù)遞推式 直接求通項(xiàng)公式,2:轉(zhuǎn)化為的遞推關(guān)系,先求,再求通項(xiàng)公式,該題已知數(shù)列前n項(xiàng)和和的遞推關(guān)系,由可的與的關(guān)系,然后由等差數(shù)列定義證明,知道等差數(shù)列后再求通項(xiàng)公式;
(2)①將代入不等式,解不等式可得,②恒成立問題往往可以采取參變分離的方法,或的形式,最后轉(zhuǎn)化為求函數(shù)最值,即或,該題可轉(zhuǎn)化為求的最大值問題,求的最大值可以結(jié)合函數(shù)的函數(shù)或者單調(diào)性處理,但是注意定義域.
試題解析:(1)令,,即,由
∵,∴,
即數(shù)列是以2為首項(xiàng),2為公差的等差數(shù)列, ∴
(2)①,即 ②∵,又∵時,
∴各項(xiàng)中數(shù)值最大為,∵對一切正整數(shù),總有恒成立,因此.
考點(diǎn):1、等差數(shù)列的定義和通項(xiàng)公式;2、恒成立問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
已知數(shù)列的前項(xiàng)和為,若且.
(Ⅰ)求證是等差數(shù)列,并求出的表達(dá)式;
(Ⅱ) 若,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列的前項(xiàng)和為,求這個數(shù)列的通項(xiàng)公式.這個數(shù)列是等差數(shù)列嗎?如果是,它的首項(xiàng)與公差分別是什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(非一級校) 題型:解答題
(本題滿分13分)
已知數(shù)列的前項(xiàng)和為,滿足.
(Ⅰ)證明:數(shù)列為等比數(shù)列,并求出;
(Ⅱ)設(shè),求的最大項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年四川省瀘縣二中高2013屆春期重點(diǎn)班第一學(xué)月考試數(shù)學(xué)試題 題型:解答題
(本小題14分)已知數(shù)列{}的前項(xiàng)和為,且=();=3
且(),
(1)寫出;
(2)求數(shù)列{},{}的通項(xiàng)公式和;
(3)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆廣東省高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題
已知數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,數(shù)列的前項(xiàng)和為,若不等式 對任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com