【題目】已知橢圓的離心率為,右焦點為,直線l經(jīng)過點F,且與橢圓交于A,B兩點,O為坐標(biāo)原點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)直線l繞點F轉(zhuǎn)動時,試問:在x軸上是否存在定點M,使得為常數(shù)?若存在,求出定點M的坐標(biāo);若不存在,請說明理由.

【答案】(1)(2)存在定點滿足題意

【解析】

1)由題意得,再根據(jù)右焦點為,求出的值,就可得到的值,再根據(jù),的關(guān)系,解出值,則橢圓方程可知;(2)當(dāng)直線斜率存在時,設(shè)出直線的方程,與橢圓方程聯(lián)立,消去,得到關(guān)于的一元二次方程,求出,,設(shè)出M點坐標(biāo),以及,要使其為常數(shù),只需要,化簡,可求出的值,當(dāng)直線垂直于軸時,同樣求出的值,兩者一致,所以在軸上存在定點M,使得為常數(shù).

1)由題意可知,,又,解得

所以,所以橢圓的方程為

2)若直線不l垂直于x軸,可設(shè)的方程為

設(shè),,則,

設(shè),則,

要使得為常數(shù)),只要,

對于任意實數(shù)k,要使式恒成立,

只要,解得

若直線l垂直于x軸,其方程為,

此時,直線l與橢圓兩交點為,,

取點,有,

綜上所述,過定點的動直線l與橢圓相交于A,B兩點,當(dāng)直線l繞點F轉(zhuǎn)動時,存在定點,使得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知四邊形BCDE為直角梯形,,,且ABE的中點沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個四棱錐

求證

平面ABCD

求二面角的大;

在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1xy+30l2x+y+10的交點為A,過A且與x軸和y軸都相切的圓的方程為_____,動點B,C分別在l1l2上,且|BC|2,則過A,B,C三點的動圓掃過的區(qū)域的面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在創(chuàng)建全國文明衛(wèi)生城市過程中,某市創(chuàng)城辦為了調(diào)查市民對創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次).通過隨機(jī)抽樣,得到參加問卷調(diào)查的人的得分(滿分100)統(tǒng)計結(jié)果如下表所示:

組別

頻數(shù)

1)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布近似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),利用該正態(tài)分布,求

2)在(1)的條件下,創(chuàng)城辦為此次參加問卷調(diào)查的市民制定如下獎勵方案:

①得分不低于的可以獲贈次隨機(jī)話費,得分低于的可以獲贈次隨機(jī)話費;

②每次獲贈的隨機(jī)話費和對應(yīng)的概率為:

贈送話費的金額(單位:)

概率

現(xiàn)有市民甲參加此次問卷調(diào)查,記 (單位:)為該市民參加問卷調(diào)查獲贈的話費,求的分布列與均值.

:參考數(shù)據(jù)與公式

,則=0.9544

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的中心在原點,焦點F1,F2在坐標(biāo)軸上,離心率為,且過點.點M(3,m)在雙曲線上.

(1)求雙曲線的方程;

(2)求證:;

(3)F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中,正確命題的序號為 (寫出所有正確命題的序號).

函數(shù)的最小值為;

已知定義在上周期為4的函數(shù)滿足,則一定為偶函數(shù);

定義在上的函數(shù)既是奇函數(shù)又是以2為周期的周期函數(shù),則

已知函數(shù),則有極值的必要不充分條件;

已知函數(shù),若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極標(biāo)坐系中,已知圓的圓心,半徑

(1)求圓的極坐標(biāo)方程;

(2)若,直線的參數(shù)方程為t為參數(shù)),直線交圓兩點,求弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求函數(shù)上的最值;

(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅲ)當(dāng)時,對任意,都有恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線 .

(Ⅰ)求曲線的普通方程和的直角坐標(biāo)方程;

(Ⅱ)若相交于兩點,設(shè)點,求的值.

查看答案和解析>>

同步練習(xí)冊答案