【題目】若定義在上的函數(shù),.

1)求函數(shù)的單調(diào)區(qū)間;

2)若、、滿足,則稱更接近.,試比較哪個更接近,并說明理由.

【答案】1)當時,的單調(diào)增區(qū)間為;當時,的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(2更接近,理由見解析.

【解析】

1)對求導,分進行討論,可得其單調(diào)區(qū)間;

2)設,,分別對 求導,可得當時,

,,當時,可得,

,對其求導可得答案.

解:(1,

①當時,,函數(shù)上單調(diào)遞增;

②當時,令,

,得,單調(diào)遞增,

,得,單調(diào)遞減;

綜上,當時,函數(shù)的單調(diào)增區(qū)間為;

時,函數(shù)的單調(diào)增區(qū)間為,

單調(diào)減區(qū)間為.

2)設,

,,上為減函數(shù),又e

時,.

,上為增函數(shù),又e,

時,,上為增函數(shù),

.

時,

,則,

是減函數(shù),e,

是減函數(shù),e,

,更接近.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)證明:;

2)當時,不等式恒成立,求實數(shù)的最大值和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,已知直線l的參數(shù)方程為:為參數(shù)點的極坐標為,曲線C的極坐標方程為

試將曲線C的極坐標方程化為直角坐標方程,并求曲線C的焦點在直角坐標系下的坐標;

設直線l與曲線C相交于兩點AB,點MAB的中點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,南寧大力實施二產(chǎn)補短板、三產(chǎn)強優(yōu)勢、一產(chǎn)顯特色策略,著力發(fā)展實體經(jīng)濟,工業(yè)取得突飛猛進的發(fā)展.逐步形成了以電子信息、機械裝備、食品制糖、鋁深加工等為主的4大支柱產(chǎn)業(yè).廣西洋浦南華糖業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如下表所示,已知.

1)求出q的值;

2)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y()關(guān)于試銷單價x()的線性回歸方程;

3)用表示用(2)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求好數(shù)據(jù)個數(shù)的數(shù)學期望.

(參考公式:線性回歸方程中的最小二乘估計分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐的底面是等腰梯形,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.

1)求證:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠采用甲、乙兩種不同生產(chǎn)方式生產(chǎn)某零件,現(xiàn)對兩種生產(chǎn)方式所生產(chǎn)的這種零件的產(chǎn)品質(zhì)量進行對比,其質(zhì)量按測試指標可劃分為:指標在區(qū)間100的為一等品;指標在區(qū)間的為二等品現(xiàn)分別從甲、乙兩種不同生產(chǎn)方式所生產(chǎn)的零件中,各自隨機抽取100件作為樣本進行檢測,測試指標結(jié)果的頻率分布直方圖如圖所示:

若在甲種生產(chǎn)方式生產(chǎn)的這100件零件中按等級,利用分層抽樣的方法抽取10件,再從這10件零件中隨機抽取3件,求至少有1件一等品的概率;

將頻率分布直方圖中的頻率視作概率,用樣本估計總體若從該廠采用乙種生產(chǎn)方式所生產(chǎn)的所有這種零件中隨機抽取3件,記3件零件中所含一等品的件數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)設函數(shù).

)討論函數(shù)的單調(diào)性;

)如果對所有的≥0,都有,求的最小值;

)已知數(shù)列中, ,且,若數(shù)列的前n項和為,求證:

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)的圖像在點處有相同的切線,求的值;

(Ⅱ)當時,恒成立,求整數(shù)的最大值;

(Ⅲ)證明:

查看答案和解析>>

同步練習冊答案