已知點(diǎn)P為圓x2+y2-4x-4y+7=0上一點(diǎn),且點(diǎn)P到直線x-y+m=0距離的最小值為
2
-1
,則m的值為( 。
分析:將圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)和半徑,由圓上一點(diǎn)P到直線x-y+m=0距離的最小值為
2
-1,得到圓心到直線的距離等于
2
,利用點(diǎn)到直線的距離公式列出關(guān)于m的方程,求出方程的解即可得到m的值.
解答:解:將圓的方程化為標(biāo)準(zhǔn)方程得:(x-2)2+(y-2)2=1,
∴圓心坐標(biāo)為(2,2),半徑r=1,
∵圓上一點(diǎn)P到直線x-y+m=0距離最小值為
2
-1,
∴圓心到直線的距離為
2
,即
|m|
2
=
2

解得:m=±2.
故選D
點(diǎn)評:此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,以及點(diǎn)到直線的距離公式,根據(jù)題意求出圓心到直線的距離是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P為圓x2+y2=4上的動(dòng)點(diǎn),且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點(diǎn)Q的軌跡為曲線C,過定點(diǎn)M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點(diǎn).
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點(diǎn)N,使得∠ANB總能被x軸平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)P為圓x2+y2=4上的動(dòng)點(diǎn),且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點(diǎn)Q的軌跡為曲線C,過定點(diǎn)M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點(diǎn).
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點(diǎn)N,使得∠ANB總能被x軸平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省鐵嶺市六校高三(上)第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點(diǎn)P為圓x2+y2=4上的動(dòng)點(diǎn),且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點(diǎn)Q的軌跡為曲線C,過定點(diǎn)M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點(diǎn).
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點(diǎn)N,使得∠ANB總能被x軸平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省珠海一中高三(下)第一次調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知點(diǎn)P為圓x2+y2=4上的動(dòng)點(diǎn),且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點(diǎn)Q的軌跡為曲線C,過定點(diǎn)M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點(diǎn).
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點(diǎn)N,使得∠ANB總能被x軸平分.

查看答案和解析>>

同步練習(xí)冊答案