14.已知函數(shù)f(x)滿足f(0)=-1,其導(dǎo)函數(shù)f′(x)滿足f′(x)>k>1,則下列結(jié)論中正確的是(1),(2),(4).
(1)f($\frac{1}{k}$)>$\frac{1}{k}$-1;(2)f($\frac{1}{k-1}$)>$\frac{1}{k-1}$;(3)f($\frac{1}{k-1}$)<$\frac{2-k}{k-1}$;(4)f($\frac{1}{k}$)<f($\frac{1}{k-1}$)

分析 根據(jù)導(dǎo)數(shù)的概念得出$\frac{f(x)+1}{x}$>k>1,(1),(2)分別取x=$\frac{1}{k}$,x=$\frac{1}{k-1}$判斷即可,(4)根據(jù)函數(shù)的單調(diào)性判斷即可.

解答 解:∵f′(x)=$\underset{lim}{x→0}$$\frac{f(x)-f(0)}{x-0}$,
且f′(x)>k>1,
∴$\frac{f(x)-f(0)}{x}$>k>1,
即$\frac{f(x)+1}{x}$>k>1,
對于(1),令x=$\frac{1}{k}$,即有f($\frac{1}{k}$)+1>$\frac{1}{k}$•k=1,即為f($\frac{1}{k}$)>0,故(1)正確;
對于(2),當(dāng)x=$\frac{1}{k-1}$時,f($\frac{1}{k-1}$)+1>$\frac{1}{k-1}$•k=$\frac{k}{k-1}$,
即f($\frac{1}{k-1}$)>$\frac{k}{k-1}$-1=$\frac{1}{k-1}$,故f($\frac{1}{k-1}$)>$\frac{1}{k-1}$,故(2)正確;
對于(3),由(2)可得f($\frac{1}{k-1}$)>$\frac{1}{k-1}$>$\frac{1}{k-1}$-1=$\frac{2-k}{k-1}$,故(3)不正確,
對于(4),函數(shù)遞增,故(4)正確.
故正確個數(shù)為3,
故選;(1)(2)(4)

點(diǎn)評 本題考查了導(dǎo)數(shù)的概念,不等式的化簡與運(yùn)算以及變量的代換問題與應(yīng)用問題,是中檔題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{x}{1+x}$.
(1)畫出f(x)的草圖;
(2)指出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知雙曲線的漸近線的方程為y=±$\sqrt{2}$x,并經(jīng)過點(diǎn)P(2,$\sqrt{2}$).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)經(jīng)過雙曲線的右焦點(diǎn)F2且傾斜角為30°的直線l交雙曲線于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=log${\;}_{\frac{1}{2}}}$(2x2-3x+1)的單調(diào)增區(qū)間為(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一元二次方程x2+(2k-1)x+k2=0兩個根均大于1的充分必要條件是( 。
A.k<-2B.k<-3C.k<0D.k>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等比數(shù)列{an}中,a1=$\frac{1}{8}$,q=2,則a4與a8的等比中項(xiàng)是( 。
A.±4B.4C.±$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合U={x|x>0},∁UA={x|0<x<3},那么集合A=( 。
A.{x|x>3}B.{x|x≥3}C.{x|x<0或x>3}D.{x|x≤0或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中,正確的是( 。
A.命題“?x∈R,x2-x≤0”的否定是“$?{x_0}∈R,x_0^2-{x_0}≥0$”.
B.命題“p∧q為真”是命題“p∨q為真”的必要不充分條件.
C.“若am2≤bm2,則a≤b”的否命題為真.
D.若實(shí)數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+cos2x.
(1)試求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,若f($\frac{A}{2}$)=1,a=2,試求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案