定義在R上的函數(shù)f(x)=ax3+bx2+cx+3同時(shí)滿足以下條件:

①f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);

(x)是偶函數(shù);

③f(x)在x=0處的切線與直線y=x+2垂直.

(Ⅰ)求函數(shù)y=f(x)的解析式;

(Ⅱ)設(shè)g(x)=4lnx-m,若存在x∈[1,e],使g(x)<(x),求實(shí)數(shù)m的取值范圍.

答案:
解析:

  解:(Ⅰ)

  ∵上是減函數(shù),在上是增函數(shù),

  ∴①(1分)

  由是偶函數(shù)得:②(2分)

  又處的切線與直線垂直,③(3分)

  由①②③得:,即(4分)

  (Ⅱ)由已知得:若存在,使,即存在,使,

  設(shè),則(6分)

  令=0,∵,∴(7分)

  當(dāng)時(shí),,∴上為減函數(shù)

  當(dāng)時(shí),,∴上為增函數(shù)

  ∴上有最大值.(9分)

  又,∴最小值為(11分)

  于是有為所求(12分)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時(shí),f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時(shí),f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個(gè)最低點(diǎn)之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達(dá)式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊答案