18.已知復(fù)數(shù)z=1-i,$\overline{z}$為z的共軛復(fù)數(shù),則下列結(jié)論正確的是( 。
A.$\overline{z}$=-1-iB.|$\overline{z}$|=$\sqrt{2}$C.|$\overline{z}$|=2D.$\overline{z}$=-1+i

分析 直接由$|\overline{z}|=|z|$結(jié)合復(fù)數(shù)模的求法得答案.

解答 解:∵z=1-i,
∴$|\overline{z}|=|z|=\sqrt{{1}^{2}+(-1)^{2}}=\sqrt{2}$.
故選:B.

點(diǎn)評 本題考查共軛復(fù)數(shù)的概念,考查了復(fù)數(shù)模的求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)a,b,c都是正數(shù),求證:
(1)($\frac{a}$)2+($\frac{a}$)2≥$\frac{a}$+$\frac{a}$;
(2)$\frac{a}{b+c}$+$\frac{c+a}$+$\frac{c}{a+b}$≥$\frac{3}{2}$;
(3)$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$≤$\frac{{a}^{8}+^{8}+{c}^{8}}{{a}^{3}^{3}{c}^{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一個(gè)幾何體的三視圖如圖所示,其中俯視圖與側(cè)視圖都是半徑為2的圓,則這個(gè)幾何體的體積是(  )
A.B.16πC.$\frac{8π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.△ABC中,中線AD、BE交于點(diǎn)G,F(xiàn)G∥AC,求$\frac{DF}{BD}$,$\frac{DF}{BC}$,$\frac{GF}{EC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知:正方體ABCD-A1B1C1D1,邊長為1,E為棱CC1的中點(diǎn).
(1)求證:BD⊥AE;
(2)求二面角E-AD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)銳角三角形ABC的三內(nèi)角為A,B,C所對的邊分別為a,b,c,函數(shù)f(x)=cosxsin(x+$\frac{π}{6}$)-cos2x.
(Ⅰ)求f(A)的取值范圍;
(Ⅱ)若f(A)=$\frac{1}{4}$,△ABC的面積為$\frac{\sqrt{3}}{4}$,求$\overrightarrow{BA}$•$\overrightarrow{BC}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.解方程:
(1)3×|2x-1|-1=5;
(2)|x-|2x+1||=3;
(3)|x-2|+|x+5|=6;
(4)|x-5|+$\sqrt{(4-x)^{2}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,正方體ABCD-A1B1C1D1中,E、F分別是A1D1、A1C1的中點(diǎn),求:
(1)異面直線AE與CF所成角的余弦值;
(2)二面角C-AF-E的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=x-[x],其中[x]表示不超過實(shí)數(shù)x的最大整數(shù),若函數(shù)g(x)=f(x)-kx-k有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(-1,-$\frac{1}{3}$]B.[$\frac{1}{5}$,$\frac{1}{3}$)C.(-$\frac{1}{3}$,-$\frac{1}{2}$]∪[$\frac{1}{5}$,$\frac{1}{4}$)D.[$\frac{1}{4}$,$\frac{1}{3}$]

查看答案和解析>>

同步練習(xí)冊答案