解不等式|x

 

答案:
解析:

解:由原不等式可得-x,

由不等式性質可知-x.

所以,原不等式的解集為{x|-x}.

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

解不等式①
4
x-1
≤x-1

4x+5
x2-2x+8
>-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x+k(k為常數(shù)),A(-2k,2)是函數(shù)y=f-1(x)圖象上一點.
(1)求f(x)的解析式;
(2)將y=f(x)的圖象按向量
a
=(0,3)
平移,得到y(tǒng)=g(x)的圖象.解不等式f(x)•g(x)+2>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=|x-a|,a∈R
(Ⅰ)當a=5,解不等式f(x)≤3;
(Ⅱ)當a=1時,若?x∈R,使得不等式f(x-1)+f(2x)≤1-2m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•長寧區(qū)一模)已知函數(shù)f(x)的定義域是{x|x∈R,x≠
k
2
,k∈Z}
,且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,當0<x<
1
2
時,f(x)=3x
(1)求證:f(x+2)=f(x)且f(x)是奇函數(shù);
(2)求當x∈(
1
2
,1)
時函數(shù)f(x)的解析式,并求x∈(2k+
1
2
,2k+1)(k∈
Z)時f(x)的解析式;
(3)當x∈(2k+
1
2
,2k+1)
時,解不等式log3f(x)>x2-(2k+2)x+2k+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在實數(shù)集R上的奇函數(shù),當x>0時,f(x)=-x2+4x.
(Ⅰ)求f(x)的解析式,并解不等式f(x)≥x;
(Ⅱ)設g(x)=2x-1+m,若對任意x1∈[-1,4],總存在x2∈[2,5],使f(x1)=g(x2),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案