在正方體ABCD-A1B1C1D1中,直線AD1與平面ABCD所成的角的大小為______.
∵正方體ABCD-A1B1C1D1中,
∴D1D⊥平面ABCD,
∴直線AD是直線AD1在平面ABCD內(nèi)的射影,
∴∠D1AD=α,就是直線AD1平面ABCD所成角,
在直角三角形AD1AD中,
AD1=D1D,
∴∠AD1AD=45°
故答案為:45°
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在四面體ABCD中,E,F(xiàn)分別是AC、BD的中點,若AB=2
3
,CD=4,EF⊥AB,則EF與CD所成之角______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正四棱錐P-ABCD的底面積為3,體積為
2
2
,E為側(cè)棱PC的中點,則PA與BE所成的角為( 。
A.
π
6
B.
π
3
C.
π
4
D.
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.

(1)求證:BN⊥平面C1B1N;
(2)設(shè)θ為直線C1N與平面CNB1所成的角,求sinθ的值;
(3)設(shè)M為AB中點,在BC邊上求一點P,使MP平面CNB1,求
BP
PC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,且SD=AD=
2
AB
,E是SA的中點.
(1)求證:平面BED⊥平面SAB;
(2)求直線SA與平面BED所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正三角形PAD,正方形ABCD,平面PAD⊥平面ABCD,E為PD的中點.
(1)求證:CD⊥AE;
(2)求證:AE⊥平面PCD;
(3)求直線AC與平面PCD所成的角的大小的正弦..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1中,對角線AC1與底面ABCD所成角的正切值等于( 。
A.1B.
2
C.
2
2
D.
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將邊長為a的正方形ABCD沿對角線AC折起,使得BD=a,則AD與平面ABC所成之角為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正方體ABCD-A1B1C1D1中,M為BB1的中點,AC、BD交于點O,則D1O與平面AMC成的角為______度.

查看答案和解析>>

同步練習(xí)冊答案