【題目】(本小題12分)如圖,在海岸線(xiàn)一側(cè)有一休閑游樂(lè)場(chǎng),游樂(lè)場(chǎng)的前一部分邊界為曲線(xiàn)段,該曲線(xiàn)段是函數(shù),的圖像,圖像的最高點(diǎn)為.邊界的中間部分為長(zhǎng)千米的直線(xiàn)段,且.游樂(lè)場(chǎng)的后一部分邊界是以為圓心的一段圓弧.
(1)求曲線(xiàn)段的函數(shù)表達(dá)式;
(2)曲線(xiàn)段上的入口距海岸線(xiàn)最近距離為千米,現(xiàn)準(zhǔn)備從入口修一條筆直的景觀(guān)路到,求景觀(guān)路長(zhǎng);
(3)如圖,在扇形區(qū)域內(nèi)建一個(gè)平行四邊形休閑區(qū),平行四邊形的一邊在海岸線(xiàn)上,一邊在半徑上,另外一個(gè)頂點(diǎn)在圓弧上,且,求平行四邊形休閑區(qū)面積的最大值及此時(shí)的值.
【答案】(1)(2)(3)
【解析】
試題分析:(1)由題意可得,代入點(diǎn),即可求出解析式.
本題考察的三角函數(shù)求值,令,即可求出此時(shí)的橫坐標(biāo),從而根據(jù)兩點(diǎn)間的距離即可求出景觀(guān)路的長(zhǎng)度.
作圖求平行四邊形的面積 ,再根據(jù),即可求出最值.
試題解析:1)由已知條件,得
又∵
又∵當(dāng)時(shí),有
∴ 曲線(xiàn)段的解析式為.
(2)由得
又…6分
∴ 景觀(guān)路長(zhǎng)為千米
(3)如圖,
作軸于點(diǎn),在中,
在中,
∴
當(dāng)時(shí),即時(shí):平行四邊形面積最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型娛樂(lè)場(chǎng)有兩種型號(hào)的水上摩托,管理人員為了了解水上摩托的使用及給娛樂(lè)城帶來(lái)的經(jīng)濟(jì)收入情況,對(duì)該場(chǎng)所最近6年水上摩托的使用情況進(jìn)行了統(tǒng)計(jì),得到相關(guān)數(shù)據(jù)如表:
(1)請(qǐng)根據(jù)以上數(shù)據(jù),用最小二乘法求水上摩托使用率關(guān)于年份代碼的線(xiàn)性回歸方程,并預(yù)測(cè)該娛樂(lè)場(chǎng)2018年水上摩托的使用率;
(2)隨著生活水平的提高,外出旅游的老百姓越來(lái)越多,該娛樂(lè)場(chǎng)根據(jù)自身的發(fā)展需要,準(zhǔn)備重新購(gòu)進(jìn)一批水上摩托,其型號(hào)主要是目前使用的Ⅰ型、Ⅱ型兩種,每輛價(jià)格分別為1萬(wàn)元、1.2萬(wàn)元.根據(jù)以往經(jīng)驗(yàn),每輛水上摩托的使用年限不超過(guò)四年.娛樂(lè)場(chǎng)管理部對(duì)已經(jīng)淘汰的兩款水上摩托的使用情況分別抽取了50輛進(jìn)行統(tǒng)計(jì),使用年限如條形圖所示:
已知每輛水上摩托從購(gòu)入到淘汰平均年收益是0.8萬(wàn)元,若用頻率作為概率,以每輛水上摩托純利潤(rùn)(純利潤(rùn)=收益-購(gòu)車(chē)成本)的期望值為參考值,則該娛樂(lè)場(chǎng)的負(fù)責(zé)人應(yīng)該選購(gòu)Ⅰ型水上摩托還是Ⅱ型水上摩托?
附:回歸直線(xiàn)方程為,其中, .參考數(shù)據(jù),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).
(Ⅰ)求f()的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,其中為自然對(duì)數(shù)的底數(shù).
(1)若,求曲線(xiàn)在點(diǎn)處的切線(xiàn)斜率;
(2)證明:當(dāng)時(shí),函數(shù)有極小值,且極小值大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知曲線(xiàn),曲線(xiàn)的左右焦點(diǎn)是, ,且就是的焦點(diǎn),點(diǎn)是與的在第一象限內(nèi)的公共點(diǎn)且,過(guò)的直線(xiàn)分別與曲線(xiàn)、交于點(diǎn)和.
(Ⅰ)求點(diǎn)的坐標(biāo)及的方程;
(Ⅱ)若與面積分別是、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 為圓的直徑,點(diǎn), 在圓上, ,矩形和圓所在的平面互相垂直,已知, .
(Ⅰ)求證:平面平面;
(Ⅱ)當(dāng)的長(zhǎng)為何值時(shí),二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為自然對(duì)數(shù)的底數(shù), ).
(1)設(shè)為的導(dǎo)函數(shù),證明:當(dāng)時(shí), 的最小值小于0;
(2)若恒成立,求符合條件的最小整數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年4月1日,新華通訊社發(fā)布:國(guó)務(wù)院決定設(shè)立河北雄安新區(qū).消息一出,河北省雄縣、容城、安新3縣及周邊部分區(qū)域迅速成為海內(nèi)外高度關(guān)注的焦點(diǎn).
(1)為了響應(yīng)國(guó)家號(hào)召,北京市某高校立即在所屬的8個(gè)學(xué)院的教職員工中作了“是否愿意將學(xué)校整體搬遷至雄安新區(qū)”的問(wèn)卷調(diào)查,8個(gè)學(xué)院的調(diào)查人數(shù)及統(tǒng)計(jì)數(shù)據(jù)如下:
調(diào)查人數(shù)() | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
愿意整體搬遷人數(shù)() | 8 | 17 | 25 | 31 | 39 | 47 | 55 | 66 |
請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量關(guān)于變量的線(xiàn)性回歸方程保留小數(shù)點(diǎn)后兩位有效數(shù)字);若該校共有教職員工2500人,請(qǐng)預(yù)測(cè)該校愿意將學(xué)校整體搬遷至雄安新區(qū)的人數(shù);
(2)若該校的8位院長(zhǎng)中有5位院長(zhǎng)愿意將學(xué)校整體搬遷至雄安新區(qū),現(xiàn)該校擬在這8位院長(zhǎng)中隨機(jī)選取4位院長(zhǎng)組成考察團(tuán)赴雄安新區(qū)進(jìn)行實(shí)地考察,記為考察團(tuán)中愿意將學(xué)校整體搬遷至雄安新區(qū)的院長(zhǎng)人數(shù),求的分布列及數(shù)學(xué)期望.
參考公式及數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:()與直線(xiàn):相切,設(shè)點(diǎn)為圓上一動(dòng)點(diǎn),軸于,且動(dòng)點(diǎn)滿(mǎn)足,設(shè)動(dòng)點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)直線(xiàn)與直線(xiàn)垂直且與曲線(xiàn)交于,兩點(diǎn),求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com