3.已知向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$不共線,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=m$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)m=-2.

分析 由題意結(jié)合共線向量基本定理可得m$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$=λ(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$),進(jìn)一步得到$\left\{\begin{array}{l}{m=2λ}\\{λ=-1}\end{array}\right.$,則m值可求.

解答 解:$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=m$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,
若$\overrightarrow{a}$∥$\overrightarrow$,則存在實(shí)數(shù)λ,使得$\overrightarrow=λ\overrightarrow{a}$,
即m$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$=λ(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$),
∵$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$不共線,∴$\left\{\begin{array}{l}{m=2λ}\\{λ=-1}\end{array}\right.$,解得m=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查共線向量基本定理的應(yīng)用,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知直線y=-$\frac{\sqrt{3}}{3}$x+5的傾斜角是所求直線l的傾斜角的大小的5倍,且直線l分別滿足下列條件:(結(jié)果化成一般式)
(1)若過(guò)點(diǎn)P(3,-4),求直線l的方程. 
(2)若在x軸上截距為-2,求直線l的方程.
(3)若在y軸上截距為3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù)中,既是偶函數(shù)又在(-∞,0)單調(diào)遞減的函數(shù)是( 。
A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,P是△ABC所在平面外一點(diǎn),E,F(xiàn),G分別在AB,BC,PC上,且PG=2GC,AC∥平面EFG,PB∥平面EFG.則$\frac{AE}{EB}$=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.命題p:?m∈R使得函數(shù)f(x)=m•2x+1有零點(diǎn);命題q:?x∈($\frac{1}{2}$,+∞),x+log2x>0,則下列命題正確的是(  )
A.¬pB.p∧qC.(¬p)∨qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有女子善織,日自倍,五日織五尺,問(wèn)日織幾何?”意思是:“一女子善于織布,每天織布的布都是前一天的2倍,已知她5天共織布5尺,問(wèn)這女子每天分別織布多少?”根據(jù)上題的已知條件,可求得該女子第3天所織布的尺數(shù)為$\frac{20}{31}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知數(shù)列{an}中,a1=2,當(dāng)n≥2時(shí),an=2an-1+3•2n-1.?dāng)?shù)列{$\frac{{a}_{n}}{{2}^{n}}$}的前n項(xiàng)和為Sn,則不等式Sn<20的解集為{1,2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,有同學(xué)說(shuō)平面PAD∩平面PBC=P,這句話對(duì)嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求下列函數(shù)的周期:
(1)f(x)=cos2x,x∈R;
(2)f(x)=sin4x+cos4x,x∈R.

查看答案和解析>>

同步練習(xí)冊(cè)答案