用數(shù)字0、1、3、4、5、8組成沒有重復(fù)數(shù)字的四位數(shù).
(Ⅰ)可以組成多少個(gè)不同的四位偶數(shù)?
(Ⅱ)可以組成多少個(gè)不同的能被5整除的四位數(shù)?
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:(Ⅰ)因?yàn)?是特殊元素,所以分選0和不選0兩類,選0時(shí)再分0在末位和不在末位,根據(jù)分類計(jì)數(shù)原理計(jì)算可得.
(Ⅱ)能被5整除的四位數(shù)末位是0或5的數(shù),因此分兩類,根據(jù)分類計(jì)數(shù)原理計(jì)算可得
解答: 解:(Ⅰ)因?yàn)?是特殊元素,所以分選0和不選0兩類,
第一類不選0時(shí),末位排4,8中的一個(gè),其它任意排共有
A
1
2
•A
3
4
=48,
第二類選0時(shí),當(dāng)末位為0時(shí),其它三位從剩下的數(shù)中任意排3個(gè)即可,有
A
3
5
=60個(gè),
當(dāng)末位為不為0時(shí),末位只能從4,8中選一個(gè),0只排在第二位或第三位,有
A
1
2
•A
1
2
•A
2
4
=48,
根據(jù)分類計(jì)數(shù)原理得可以組成48+60+48=156個(gè)不同的四位偶數(shù)
(Ⅱ)能被5整除的四位數(shù)末位是0或5的數(shù),因此分兩類
第一類,末位為0時(shí),其它三位從剩下的數(shù)中任意排3個(gè)即可,有
A
3
5
=60個(gè),
第二類,米位為5時(shí),首位不能排0,則首位只能從1,3,4,5選1個(gè),第二位和第三位從剩下的任選2個(gè)即可,有
A
1
4
•A
2
4
=48個(gè),
根據(jù)分類計(jì)數(shù)原理得可以組成60+48=108個(gè)不同的能被5整除的四位數(shù).
點(diǎn)評(píng):本題主要考查了分類計(jì)數(shù)原理,如何分類時(shí)關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若存在實(shí)常數(shù)k和b,使得函數(shù)F(x)和G(x)對(duì)其公共定義域上的任意實(shí)數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”.已知函數(shù)f(x)=x2(x∈R),g(x)=
1
x
(x<0),h(x)=2elnx.有下列命題:
①F(x)=f(x)-g(x)在x∈(-
1
32
,0)內(nèi)單調(diào)遞增;
②f(x)和g(x)之間存在“隔離直線”,且b的最小值為-4;
③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(-4,0];
④f(x)和h(x)之間存在唯一的“隔離直線”y=2
e
x-e.
其中真命題的個(gè)數(shù)有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算sin45°cos15°+cos45°sin15°=( 。
A、-
3
2
B、-
1
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈(0,+∞),x3-x2+1≥0,”的否定是( 。
A、?x∈(0,+∞),x3-x2+1≤0
B、?x∈(0,+∞),x3-x2+1≤0
C、?x∈(0,+∞),x3-x2+1<0
D、?x∈(0,-∞),x3-x2+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
3
)(A>0,ω>0)與y=-sinx的圖象關(guān)于一直線對(duì)稱.
(Ⅰ)求函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的
1
2
倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.若關(guān)于x的方程g(x)+m=0在區(qū)間[0,
π
2
]上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形AOB的周長(zhǎng)為12.
(1)若扇形AOB的面積為8,求圓心角α的大。
(2)當(dāng)扇形AOB的面積取到最大值時(shí),求圓心角α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求使等式[
12
24
]=[
10
02
]M[
10
0-1
]成立的矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下面一組組合數(shù)等式:
1•
C
1
n
=n•
C
0
n-1
;
2•
C
2
n
=n•
C
1
n-1
;
3•
C
3
n
=n•
C
2
n-1


(Ⅰ)由以上規(guī)律,請(qǐng)寫出第k(k∈N*)個(gè)等式并證明;
(Ⅱ)隨機(jī)變量X~B(n,p),求證:EX=np.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,(a+b+c)(b+c-a)=
6
bc,求cosA.

查看答案和解析>>

同步練習(xí)冊(cè)答案