7.在極坐標(biāo)系(ρ,θ)(ρ>0,0<θ<$\frac{π}{2}$)中,曲線ρ=$\sqrt{3}$sinθ與ρ=cosθ的交點(diǎn)的直角坐標(biāo)系坐標(biāo)為($\frac{3}{4}$,$\frac{\sqrt{3}}{4}$).

分析 曲線ρ=$\sqrt{3}$sinθ與ρ=cosθ兩式相除得tanθ=$\frac{\sqrt{3}}{3}$,由此求出θ,ρ,從而能求出曲線ρ=$\sqrt{3}$sinθ與ρ=cosθ的交點(diǎn)的直角坐標(biāo)系坐標(biāo).

解答 解:∵曲線ρ=$\sqrt{3}$sinθ與ρ=cosθ,
∴兩式相除得tanθ=$\frac{\sqrt{3}}{3}$,解得θ=$\frac{π}{6}$,
∴$ρ=cos\frac{π}{6}$=$\frac{\sqrt{3}}{2}$.
∴x=ρcosθ=$\frac{\sqrt{3}}{2}cos\frac{π}{6}$=$\frac{3}{4}$,
y=ρsinθ=$\frac{\sqrt{3}}{2}sin\frac{π}{6}$=$\frac{\sqrt{3}}{4}$,
∴曲線ρ=$\sqrt{3}$sinθ與ρ=cosθ的交點(diǎn)的直角坐標(biāo)系坐標(biāo)為($\frac{3}{4}$,$\frac{\sqrt{3}}{4}$).
故答案為:($\frac{3}{4}$,$\frac{\sqrt{3}}{4}$).

點(diǎn)評(píng) 本題考查兩曲線交點(diǎn)的直角坐標(biāo)系坐標(biāo)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意極坐標(biāo)與直線坐標(biāo)的轉(zhuǎn)化公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)當(dāng)x∈[4,12]時(shí),求f(x)的值域;
(3)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知-$\frac{1}{2}<a<$0,試將下列各數(shù)按大小順序排列:A=1+a2,B=1-a2,C=$\frac{1}{1+a}$,D=$\frac{1}{1-a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=4+t}\\{y=3+t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程ρsin2θ=4cosθ,直線l與曲線C相交于A,B兩點(diǎn),則線段AB的長(zhǎng)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在極坐標(biāo)系中,設(shè)曲線C1:ρ=2sinθ與C2:ρ=2cosθ的交點(diǎn)分別為A,B,則線段AB的垂直平分線的極坐標(biāo)方程為(  )
A.ρ=$\frac{1}{sinθ+cosθ}$B.ρ=$\frac{1}{sinθ-cosθ}$C.θ=$\frac{π}{4}$(ρ∈R)D.θ=$\frac{3π}{4}$(ρ∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在銳角ABC中,角A、B、C所對(duì)的邊分別為a,b,c,b=4,c=6,且asinB=2$\sqrt{3}$.
(1)求角A的大小;
(2)若D為BC的中點(diǎn),求線段AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知正方體ABCD-A1B1C1D1中的棱長(zhǎng)為8,點(diǎn)H在棱AA1上,且HA1=2,點(diǎn)E、F分別為棱B1C1、C1C的中點(diǎn),P是側(cè)面BCC1B1內(nèi)一動(dòng)點(diǎn),且滿足PE⊥PF,則當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),HP2的最小值是(  )
A.10B.27-6$\sqrt{2}$C.2$\sqrt{21}$D.108-24$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x+2|x-a|,
(1)當(dāng)a=0時(shí),求不等式f(x)≥1的解集;
(2)當(dāng)a<0時(shí),函數(shù)f(x)與x軸圍成的三角形面積為6,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.一個(gè)底面半徑和高都為2的圓椎的表面積為( 。
A.4($\sqrt{2}$+1)πB.4(2$\sqrt{2}$+1)πC.4$\sqrt{2}$πD.8$\sqrt{2}$π

查看答案和解析>>

同步練習(xí)冊(cè)答案