【題目】已知 分別為橢圓的左、右焦點,橢圓離心率,直線通過點,且傾斜角是45°.
(1)求橢圓的標準方程;
(2)若直線與橢圓交于兩點,求的面積.
【答案】(1) ;(2) .
【解析】試題分析:(1)由焦點坐標可得由離心率,可得,從而可得進而可得橢圓的標準方程;(2)由點斜式可得直線的方程為: 將代入橢圓,求出的坐標利用兩點間的距離公式、點到直線距離公式以及三角形面積公式可得的面積.
試題解析:(1)由已知,又,
∴橢圓的標準方程是
(2)因為,
所以直線的方程為:
將代入橢圓中整理得,
,
可解得,
∴,
點到直線的距離為: ,
.
【方法點晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關系,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點在軸上,還是在軸上,還是兩個坐標軸都有可能;②設方程:根據(jù)上述判斷設方程或 ;③找關系:根據(jù)已知條件,建立關于、、的方程組;④得方程:解方程組,將解代入所設方程,即為所求.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)當時,求曲線在點處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若在區(qū)間上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是滿足下列性質的所有函數(shù)組成的集合:對任何(其中為函數(shù)的定義域),均有成立.
(1)已知函數(shù),,判斷與集合的關系,并說明理由;
(2)是否存在實數(shù),使得,屬于集合?若存在,求的取值范圍,若不存在,請說明理由;
(3)對于實數(shù)、 ,用表示集合中定義域為區(qū)間的函數(shù)的集合.
定義:已知是定義在上的函數(shù),如果存在常數(shù),對區(qū)間的任意劃分:,和式恒成立,則稱為上的“絕對差有界函數(shù)”,其中常數(shù)稱為的“絕對差上界”,的最小值稱為的“絕對差上確界”,符號;求證:集合中的函數(shù)是“絕對差有界函數(shù)”,并求的“絕對差上確界”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調查每天微信用戶使用微信的時間,某經(jīng)銷化妝品分微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認為“微信控”與“性別”有關?
(2)現(xiàn)從調查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜各1份,再從抽取的這5人中再隨機抽取3人贈送200元的護膚品套裝,記這3人中“微信控”的人數(shù)為X,試求X的分布列和數(shù)學期望.
參考公式:K2= ,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD邊長為2,以D為圓心、DA為半徑的圓弧與以BC為直徑的半圓O交于點F,連結CF并延長交AB于點E.
(1)求證:AE=EB;
(2)求EFFC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
()若,求曲線在點處的切線方程.
()若,求函數(shù)的單調區(qū)間.
()若,且在區(qū)間上恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com