如圖所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,AB=1,BC=
2
,AA1=2,E是側(cè)棱BB1的中點.
(1)求四面體A-A1ED的體積;
(2)求異面直線AE與B1D所成角的大。ńY(jié)果用反三角函數(shù)表示)
考點:異面直線及其所成的角,棱柱、棱錐、棱臺的體積
專題:空間角
分析:(1)由已知條件求出△A1ED的面積,再由VA-A1ED=VE-A1AD,利用等積法能求出四面體A-A1KD的體積.
(2)取CC1中點F,連結(jié)DF,B1F.因為DF∥AE,所以DF與B1D所成的角的大小等于異面直線AE與B1D所成的角的大。纱四芮蟪霎惷嬷本AE與B1D所成的角的大小.
解答: (本題滿分12分)本題共有2小題,第1小題滿分(6分),第2小題滿分(6分).
解:(1)因為在直四棱柱ABCD-A1B1C1D1中,
底面ABCD是矩形,AB=1,BC=
2
,AA1=2,E是側(cè)棱BB1的中點,
所以SA1ED=
1
2
×2×
2
=
2

所以VA-A1ED=VE-A1AD=
1
3
SA1ED•AB
=
2
3

(2)取CC1中點F,連結(jié)DF,B1F.
因為DF∥AE,所以DF與B1D所成的角的大小等于異面直線AE與B1D所成的角的大。
在△B1DF中,B1D=
7
,DF=
2
B1F=
3
,
所以cosB1DF=
DF2+DB12-B1F2
2DF•DB1
=
3
14
14
,
所以異面直線AE與B1D所成的角為arccos
3
14
14
點評:本題考查四面體的體積的求法,考查異面直線所成角的求法,是中檔題,解題時要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

A,B是焦點為F的拋物線y2=4x上的兩動點,線段AB的中點M在直線x=t(t>0)上.
(1)當(dāng)t=1時,求|FA|+|FB|的值.
(2)當(dāng)M(2,2)時,求直線AB的方程.
(3)記|AB|的最大值為g(t),求g(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,點E在棱CD上.
(Ⅰ)求證:EB1⊥AD1;
(Ⅱ)若E是CD中點,求EB1與平面AD1E所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(2x-
π
3
),x∈R
(1)在給定的平面直角坐標(biāo)系中,利用五點法畫函數(shù)f(x)=3sin(2x-
π
3
),x∈[0,π]的簡圖;
(2)求f(x)=3sin(2x-
π
3
),x∈[-π,0]的單調(diào)增區(qū)間;
(3)若方程f(x)=m在[-
π
2
,0]上有實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)y=
3x
+x3的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:
lim
n→+∞
(1+
1
n
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平面四邊形ABCP中,D為PA的中點,PA⊥AB,CD∥AB,且PA=CD=2AB=4.將此平面四邊形ABCP沿CD折成直二面角P-DC-B,連接PA、PB,設(shè)PB中點為E.
(Ⅰ)證明:平面PBD⊥平面PBC;
(Ⅱ)在線段BD上是否存在一點F,使得EF⊥平面PBC?若存在,請確定點F的位置;若不存在,請說明理由.
(Ⅲ)求直線AB與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=CC1,M為AB中點,D在A1B1上且A1D=3DB1
(1)求證:平面CMD⊥平面ABB1A1;
(2)求二面角C-BD-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓G:x2+y2-2x-
2
y=0,經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點F及上頂點B,過圓外一點(m,0)(m>a)傾斜角為
6
的直線l交橢圓于C,D兩點,
(Ⅰ)求橢圓的方程;
(Ⅱ)若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案