【題目】如圖,已知四邊形ABCD與四邊形BDEF均為菱形,,且
求證:平面BDEF;
求二面角的余弦值.
【答案】(1)見證明;(2).
【解析】
設(shè)AC、BD交于點(diǎn)O,連結(jié)OF、DF,推導(dǎo)出,,,由此能證明平面BDEF.
以OA為x軸,OB為y軸,OF為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.
設(shè)AC、BD交于點(diǎn)O,連結(jié)OF、DF,
四邊形ABCD與四邊形BDEF均為菱形,,且,
,,,
四邊形ABCD與四邊形BDEF均為菱形,
,
,平面BDEF.
,,平面ABCD,
以OA為x軸,OB為y軸,OF為z軸,建立空間直角坐標(biāo)系,
設(shè),則0,,0,,1,,0,,
,1,,
,
設(shè)平面ABF的法向量y,,
則,取,得,
設(shè)平面BCF的法向量y,,
則,取,得,
設(shè)二面角的平面角為,由圖可知為鈍角
則.
二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠修建一個(gè)長方體無蓋蓄水池,其容積為4 800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長方形長為x米.
(1)求底面積,并用含x的表達(dá)式表示池壁面積;
(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標(biāo)方程;
(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在測(cè)試中,客觀題難題的計(jì)算公式為,其中為第題的難度,為答對(duì)該題的人數(shù),為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題.測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:
題號(hào) | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測(cè)試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):
學(xué)生 編號(hào) 題號(hào) | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);
題號(hào) | 1 | 2 | 3 | 4 | 5 |
實(shí)測(cè)答對(duì)人數(shù) | |||||
實(shí)測(cè)難度 |
(2)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;
(3)定義統(tǒng)計(jì)量,其中為第題的實(shí)測(cè)難度,為第題的預(yù)估難度().規(guī)定:若,則稱該次測(cè)試的難度估合理,否則為不合理.判斷本次測(cè)試的難度預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】奇函數(shù)f(x)在區(qū)間(-∞,0)上單調(diào)遞減,且f(-1)=0,則不等式(x-1)f(x-1)<0的解集是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某市2015年全年空氣質(zhì)量等級(jí)如表1所示.
表1
空氣質(zhì)量等級(jí)(空氣質(zhì)量指數(shù)(AQI)) | 頻數(shù) | 頻率 |
優(yōu)() | 83 | 22.8% |
良() | 121 | 33.2% |
輕度污染() | 68 | 18.6% |
中度污染() | 49 | 13.4% |
重度污染() | 30 | 8.2% |
嚴(yán)重污染() | 14 | 3.8% |
合計(jì) | 365 | 100% |
2016年5月和6月的空氣質(zhì)量指數(shù)如下:
5月 240 80 56 53 92 126 45 87 56 60
191 62 55 58 56 53 89 90 125 124
103 81 89 44 34 53 79 81 62 116
88
6月 63 92 110 122 102 116 81 163 158 76
33 102 65 53 38 55 52 76 99 127
選擇合適的統(tǒng)計(jì)圖描述數(shù)據(jù),并回答下列問題:
(1)分析該市2016年6月的空氣質(zhì)量情況.
(2)比較該市2016年5月和6月的空氣質(zhì)量,哪個(gè)月的空氣質(zhì)量較好?
(3)比較該市2016年6月與該市2015年全年的空氣質(zhì)量,2016年6月的空氣質(zhì)量是否好于去年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖象在點(diǎn)處的切線方程;
(3)若不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是我國某城市在2017年1月份至10月份各月最低溫與最高溫 的數(shù)據(jù)一覽表
已知該城市的各月最低溫與最高溫具有線性相關(guān)關(guān)系,根據(jù)該一覽表,則下列結(jié)論錯(cuò)誤的是 ( )
A. 最低溫與最高溫為正相關(guān)
B. 每月最高溫與最低溫的平均值前8個(gè)月逐月增加
C. 月溫差(最高溫減最低溫)的最大值出現(xiàn)在1月
D. 1月至4月的月溫差(最高溫減最低溫)相對(duì)于7月至10月,波動(dòng)性更大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的首項(xiàng),前項(xiàng)和滿足關(guān)系式.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列的公比為,作數(shù)列,使,求數(shù)列的通項(xiàng)公式;
(3)數(shù)列滿足條件(2),求和:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com