A. | -1 | B. | -2 | C. | 1 | D. | 2 |
分析 由已知利用正弦定理,三角函數(shù)恒等變換的應用化簡即可得解.
解答 解:∵a≠b,可得:sinA≠sinB,sin2A≠sin2B,
∴$\frac{sinC(bcosA-acosB)}{asinA-bsinB}$
=$\frac{sin(A+B)(sinBcosA-sinAcosB)}{si{n}^{2}A-si{n}^{2}B}$
=$\frac{sin(A+B)sin(B-A)}{si{n}^{2}A-si{n}^{2}B}$
=$\frac{-\frac{1}{2}(cos2B-cos2A)}{si{n}^{2}A-si{n}^{2}B}$
=$\frac{cos2B-cos2A}{2(si{n}^{2}B-si{n}^{2}A)}$
=$\frac{cos2B-cos2A}{2(\frac{1-cos2B}{2}-\frac{1-cos2A}{2})}$
=$\frac{cos2B-cos2A}{cos2A-cos2B}$
=-1.
故選:A.
點評 本題主要考查了正弦定理,三角函數(shù)恒等變換的應用在三角函數(shù)化簡求值中的應用,考查了計算能力和轉化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 24 | B. | 8 | C. | $\frac{8}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,3] | B. | [-3,1] | C. | (-∞,-3]∪[1,+∞] | D. | (-∞,1]∪[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com