若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:

【答案】分析:(Ⅰ)由題設(shè)條件知anlgxn=an+1lgxn+1=an+2lgxn+2.設(shè)anlgxn=an+1lgxn+1=an+2lgxn+2=p,有,由此導(dǎo)出xn+12=xnxn+2,所以數(shù)列{xn}是等比數(shù)列.
(Ⅱ)由題意知{xn}的公比為q=2.xn=x3qn-3=8×2n-3=2n.由此能夠推導(dǎo)出第m行各數(shù)的和為
(Ⅲ)由xn=2n,知.所以
由此入手能夠?qū)С?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131023212956843768741/SYS201310232129568437687019_DA/4.png">.
解答:解:(Ⅰ)證明:因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131023212956843768741/SYS201310232129568437687019_DA/5.png">,且數(shù)列{xn}中各項(xiàng)都是正數(shù),
所以anlgxn=an+1lgxn+1=an+2lgxn+2
設(shè)anlgxn=an+1lgxn+1=an+2lgxn+2=p,①
因?yàn)閿?shù)列{an}是調(diào)和數(shù)列,故an≠0,
所以,.②
由①得,代入②式得,
所以2lgxn+1=lgxn+lgxn+2,即lgxn+12=lg(xnxn+2).
故xn+12=xnxn+2,所以數(shù)列{xn}是等比數(shù)列.(5分)
(Ⅱ)設(shè){xn}的公比為q,則x3q4=x7,即8q4=128.由于xn>0,故q=2.
于是xn=x3qn-3=8×2n-3=2n
注意到第n(n=1,2,3,)行共有n個(gè)數(shù),
所以三角形數(shù)表中第1行至第m-1行共含有個(gè)數(shù).
因此第m行第1個(gè)數(shù)是數(shù)列{xn}中的第項(xiàng).
故第m行第1個(gè)數(shù)是
所以第m行各數(shù)的和為.(9分)
(Ⅲ)因?yàn)閤n=2n,所以
所以
=(k=1,2,3,,n),
所以
=
所以.(14分)
點(diǎn)評:本題考查數(shù)列知識的綜合運(yùn)用,難度較大,解題時(shí)要注意挖掘隱含條件,靈活運(yùn)用公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

()若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列是調(diào)和數(shù)列,對于各項(xiàng)都是正數(shù)的數(shù)列,滿足

(Ⅰ)證明數(shù)列是等比數(shù)列;

(Ⅱ)把數(shù)列中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形

數(shù)表,當(dāng)時(shí),求第行各數(shù)的和;

(Ⅲ)對于(Ⅱ)中的數(shù)列,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市朝陽區(qū)2010屆高三一模數(shù)學(xué)(理科) 題型:解答題

若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列是調(diào)和數(shù)列,對于各項(xiàng)都是正數(shù)的數(shù)列,滿足
(Ⅰ)證明數(shù)列是等比數(shù)列;

(Ⅱ)把數(shù)列中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形
數(shù)表,當(dāng)時(shí),求第行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高三下學(xué)期一模數(shù)學(xué)(文)測試 題型:解答題

(本小題滿分14分)

若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列是調(diào)和數(shù)列,對于各項(xiàng)都是正數(shù)的數(shù)列,滿足
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)把數(shù)列中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,
當(dāng)時(shí),求第行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列,若數(shù)列滿足
,求證:數(shù)列為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高三下學(xué)期一模數(shù)學(xué)(文)測試 題型:解答題

(本小題滿分14分)

若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列是調(diào)和數(shù)列,對于各項(xiàng)都是正數(shù)的數(shù)列,滿足

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)把數(shù)列中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,

當(dāng)時(shí),求第行各數(shù)的和;

(Ⅲ)對于(Ⅱ)中的數(shù)列,若數(shù)列滿足

,求證:數(shù)列為等差數(shù)列.

 

 

查看答案和解析>>

同步練習(xí)冊答案