如圖所示,已知線段AB在平面α內(nèi),線段ACα,線段BDAB,且BD與平面α所成的角是30°,如果AB=a,AC=BD=b,求C、D間的距離.

解:由ACα,可知ACAB,過點DDD′⊥α,D′為垂足,則∠DBD′=30°,〈〉=120°.

=b2+a2+b2+2b2cos120°=a2+b2.

所以CD=.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示,已知D是面積為1的△ABC的邊AB上任一點,E是邊AC上任一點,連接DE,F(xiàn)是線段DE上一點,連接BF,設
AD
=λ1
AB
,
AE
=λ2
AC
,
DF
=λ3
DE
,且λ2+λ3-λ1=
1
2
,記△BDF的面積為s=f(λ1,λ2,λ3),則S的最大值是( 。
【注:必要時,可利用定理:若a,b,c∈R+,則abc≤(
a+b+c
3
)3
,(當且僅當a=b=c時,取“=”)】

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知兩點A(2,0),B(3,4),直線ax-2y=0與線段AB交于點C,且C分
AB
所成的比λ=2,則實數(shù)a的值為( 。
A、-4B、4C、-2D、2

查看答案和解析>>

科目:高中數(shù)學 來源:全優(yōu)設計選修數(shù)學-1-1蘇教版 蘇教版 題型:044

如圖所示,已知點A(2,8),B(x1,y1),C(x2,y2)在拋物線y2=2px上,△ABC的重心與此拋物線的焦點F重合.

(1)寫出該拋物線的方程和焦點F的坐標;

(2)求線段BC中點M的坐標;

(3)求BC所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:設計選修數(shù)學-1-1蘇教版 蘇教版 題型:044

如圖所示,已知點A(2,8),B(x1,y1)、C(x2,y2)在拋物線y2=2px上,△ABC的重心與此拋物線的焦點F重合.

(1)寫出該拋物線的方程和焦點F的坐標;

(2)求線段BC中點M的坐標;

(3)求BC所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知線段|AB|=4,動圓O’與線段AB切于點C,且|AC|―|BC|=,過點A、B分別作⊙O’的切線,兩切線相交于點P;且P、O’在AB的同側(cè).

(1)建立適當?shù)淖鴺讼担擮’位置變化時,求動點P的軌跡E的方程;

(2)過點B作直線交曲線E于M、N,求△AMN面積的最小值.

查看答案和解析>>

同步練習冊答案