【題目】已知函數(shù)().
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若對(duì)(為自然對(duì)數(shù)的底數(shù)),恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間 (3)
【解析】分析:(1)求出,,切線方程為。
(2)先求定義域,再求導(dǎo),,因?yàn)?/span>,所以,所以導(dǎo)數(shù)的零點(diǎn)只有一個(gè),可求得單調(diào)區(qū)間。(3)對(duì),恒有成立,等價(jià)于對(duì),恒有成立,構(gòu)造函數(shù),,即: ,利用導(dǎo)數(shù)可求得范圍,注意題目中。
詳解:(1)當(dāng)時(shí),
,又
∴曲線在點(diǎn)處的切線方程為:
即:
(2)
∵時(shí),∴
令,解得
令,解得
∴的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間
(3)由題意,對(duì),恒有成立,等價(jià)于對(duì),恒有
成立,即:
設(shè),
∵在上恒成立
∴在單調(diào)遞增
∴
∴只需;即:
又∵,∴
∴實(shí)數(shù)的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期末考試語文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是.
(1)若成績(jī)?cè)?/span>的學(xué)生中男生比女生多一人,從成績(jī)?cè)?/span>的學(xué)生中任選2人,求此2人都是男生的概率;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績(jī)的平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘭天購物廣場(chǎng)某營銷部門隨機(jī)抽查了100名市民在2018年國慶長(zhǎng)假期間購物廣場(chǎng)的消費(fèi)金額,所得數(shù)據(jù)如表,已知消費(fèi)金額不超過3千元與超過3千元的人數(shù)比恰為.
消費(fèi)金額(單位:千元) | 人數(shù) | 頻率 |
8 | 0.08 | |
12 | 0.12 | |
8 | 0.08 | |
7 | 0.07 | |
合計(jì) | 100 | 1.00 |
(1)試確定,,,的值,并補(bǔ)全頻率分布直方圖(如圖);
(2)用分層抽樣的方法從消費(fèi)金額在、和的三個(gè)群體中抽取7人進(jìn)行問卷調(diào)查,則各小組應(yīng)抽取幾人?若從這7人中隨機(jī)選取2人,則此2人來自同一群體的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (x>0,e為自然對(duì)數(shù)的底數(shù)),f'(x)是f(x)的導(dǎo)函數(shù). (Ⅰ)當(dāng)a=2時(shí),求證f(x)>1;
(Ⅱ)是否存在正整數(shù)a,使得f'(x)≥x2lnx對(duì)一切x>0恒成立?若存在,求出a的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l過點(diǎn)M(3,4),其傾斜角為45°,圓C的參數(shù)方程為 .再以原點(diǎn)為極點(diǎn),以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系xoy有相同的長(zhǎng)度單位.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A、B,求|MA||MB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為矩形,測(cè)棱底面,,點(diǎn)是的中點(diǎn),作交于.
(Ⅰ)求證:平面平面.
(Ⅱ)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以為頂點(diǎn)的多面體中, 平面, 平面, .
(1)請(qǐng)?jiān)趫D中作出平面,使得,且,并說明理由;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com