分析 (Ⅰ)由題意可得冪指數(shù)為偶數(shù),且冪指數(shù)為正數(shù),根據(jù)當2m-n=1時,冪指數(shù)為4,符合題意,可得冪函數(shù)的解析式.
(Ⅱ)由題意,g(x)=aex-(x+2)+2a2-1的最小值小于等于0.分類討論,求出實數(shù)a的取值范圍.
解答 解:因為冪函數(shù)f(x)=(2m-n)x${\;}^{-{m}^{2}+n+4}$(m,n∈Z)為偶函數(shù),
且在區(qū)間(0,+∞)上是單調遞增函數(shù)
∴$\left\{\begin{array}{l}{2m-n=1}\\{-{m}^{2}+n+4>0}\end{array}\right.$,冪指數(shù)為偶數(shù)
∴m=1,n=1,
故解析式為y=x4,
(Ⅱ)由題意,g(x)=aex-(x+2)+2a2-1的最小值小于等于0.
g′(x)=aex-1,a≤0,g′(x)<0,滿足;
a>0時,函數(shù)在(-∞,-lna)單調遞減,(-lna,+∞)單調遞增,
∴gmin(x)=2a2+1+lna-3≤0,∴a≤1,∴0<a≤1.
綜上所述a≤1.
點評 本題主要考查冪函數(shù)的性質,考查函數(shù)的單調性,考查恒成立問題,正確轉化是關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $-\frac{{2\sqrt{2}}}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | π+1 | B. | π+2 | C. | 2π+1 | D. | $3π+5+2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 某校高一(5)班數(shù)學成績非常突出的男生能組成一個集合 | |
B. | 《數(shù)學1(必修)》課本中所有的難題能組成一個集合 | |
C. | 性格開朗的女生可以組成一個集合 | |
D. | 圓心為定點,半徑為1的圓內的點能組成一個集合 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com