圓C:x2+y2-24x-28y-36=0內(nèi)有一點Q(4,2),過點Q作直角AQB交圓于A,B,求動弦AB中點的軌跡方程.

解:設(shè)AB中點M(x,y),則∵Rt△ABQ∴MQ= 設(shè)AB到圓心的距離為d,r2-d2=[]2=MQ2,即:r2=MQ2+d2
又r2=376,MQ2=(x-4)2+(y-2)2,d2=(x-12)2+(y-14)2,∴376=(x-4)2+(y-2)2+(x-12)2+(y-14)2
即162=(x-8)2+(y-8)2
分析:由于△ABQ中,∠AQB為直角,所以設(shè)AB中點M(x,y),則MQ=,再構(gòu)建圓中弦心距,半徑,弦長的一半構(gòu)成直角三角形,可構(gòu)建方程.
點評:本題主要考查與圓有關(guān)的軌跡問題,應(yīng)充分利用圓的特殊性,從而求出軌跡方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線l被圓C:x2+y2=2所截的弦長不小于2,則l與下列曲線一定有公共點的是(  )
A、(x-1)2+y2=1
B、
x2
2
+y2=1
C、y=x2
D、x2-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l被圓C:x2+y2=2所截的弦長不小于2,則在下列曲線中:
①y=x2-2②(x-1)2+y2=1③
x22
+y2=1
④x2-y2=1
與直線l一定有公共點的曲線的序號是
 
.(寫出你認為正確的所有序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M是圓C:x2+y2=2上的一點,且MH⊥x軸,H為垂足,點N滿足NH=
2
2
MH,記動點N的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)若AB是曲線E的長為2的動弦,O為坐標原點,求△AOB面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=1”是“直線l:y=kx+a和圓C:x2+y2=2相交”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=2,坐標原點為O.圓C上任意一點A在x軸上的射影為點B,已知向量
OQ
=t
OA
+(1-t)
OB
(t∈R,t≠0)

(1)求動點Q的軌跡E的方程;
(2)當t=
2
2
時,過點S(0,-
1
3
)的動直線l交軌跡E于A,B兩點,試問:在坐標平面上是否存在一個定點T,使得以AB為直徑的圓恒過T點?若存在,求出點T的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案