【題目】已知函數(shù),.

1)若,求的零點個數(shù);

2)證明:.

【答案】1)零點個數(shù)為02)證明見解析

【解析】

1,討論兩種情況,計算函數(shù)的單調(diào)性得到恒成立,故函數(shù)沒有零點.

2)只需要證明即可,討論,兩種情況,求導(dǎo)得到函數(shù)單調(diào)性,根據(jù)單調(diào)性計算函數(shù)最值,得到證明.

1)因為,,

①當(dāng)時,,,

當(dāng)時,,單調(diào)遞減;

當(dāng)時,單調(diào)遞增;所以當(dāng)時,取得最小值,

所以.

②當(dāng)時,,,單調(diào)遞增;所以.

綜上,,因此,沒有零點,即的零點個數(shù)為0.

2)要證,

只要證即可.

因為當(dāng)時,.

①當(dāng)時,

因為當(dāng),,單調(diào)遞增,

當(dāng),單調(diào)遞增,

,所以上單調(diào)遞增,

所以,

所以.

②當(dāng)時,,單調(diào)遞增,

所以,,

所以.

又因為,所以.

因此,時,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線的焦點F且傾斜角為的直線交拋物線于AB兩點,交其準(zhǔn)線于點C,且|AF|=|FC|,|BC|=2.

1)求拋物線C的方程;

2)直線l交拋物線CDE兩點,且這兩點位于x軸兩側(cè),與x軸交于點M,若·的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點為其左頂點,點的坐標(biāo)為,過點作直線與橢圓交于兩點,當(dāng)垂直于軸時,.

1)求該橢圓的方程;

2)設(shè)直線分別交直線于點,,線段的中點為,設(shè)直線的斜率分別為,,且,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)點xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsinθ6.

1A為曲線C1上的動點,點M在線段OA上,且滿足|OM||OA|36,求點M的軌跡C2的直角坐標(biāo)方程;

2)點E的極坐標(biāo)為(4,),點F在曲線C2上,求△OEF面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C.

1)求橢圓C的離心率;

2)設(shè)分別為橢圓C的左右頂點,點P在橢圓C上,直線AP,BP分別與直線相交于點M,N.當(dāng)點P運動時,以M,N為直徑的圓是否經(jīng)過軸上的定點?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為正整數(shù),區(qū)間(其中,)同時滿足下列兩個條件:

①對任意,存在使得;

②對任意,存在,使得(其中).

(Ⅰ)判斷能否等于;(結(jié)論不需要證明).

(Ⅱ)求的最小值;

(Ⅲ)研究是否存在最大值,若存在,求出的最大值;若不在在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求在點處的切線方程;

2)當(dāng)時,證明:;

3)判斷曲線是否存在公切線,若存在,說明有幾條,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面為直角梯形,平面,且,.

1)求證:平面平面;

2)若與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代著名數(shù)學(xué)家劉徽的杰作《九章算術(shù)注》是中國最寶貴的數(shù)學(xué)遺產(chǎn)之一,書中記載了他計算圓周率所用的方法.先作一個半徑為1的單位圓,然后做其內(nèi)接正六邊形,在此基礎(chǔ)上做出內(nèi)接正邊形,這樣正多邊形的邊逐漸逼近圓周,從而得到圓周率,這種方法稱為“劉徽割圓術(shù)”.現(xiàn)設(shè)單位圓的內(nèi)接正邊形的一邊為,點為劣弧的中點,則是內(nèi)接正邊形的一邊,現(xiàn)記,,則(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案
关 闭